see: a) H. Ito, H. Yamanaka, J.-i. Tateiwa, A. Hosomi,
Tetrahedron Lett. 2000, 41, 6821. b) M. O’Brien, K.-s. Lee,
A. H. Hoveyda, J. Am. Chem. Soc. 2010, 132, 10630. c) H.
Ito, K. Kubota, Org. Lett. 2012, 14, 890. d) S. K. Bose, S.
Brand, H. O. Omoregie, M. Haehnel, J. Maier, G.
Bringmann, T. B. Marder, ACS Catal. 2016, 6, 8332. e) A.
S. Dudnik, G. C. Fu, J. Am. Chem. Soc. 2012, 134, 10693.
f) S. K. Bose, K. Fucke, L. Liu, P. G. Steel, T. B. Marder,
Angew. Chem. Int. Ed. 2014, 53, 1799. g) T. C. Atack, S. P.
Cook, J. Am. Chem. Soc. 2016, 138, 6139. h) Y. Cheng, C.
Mück-Lichtenfeld, A. Studer, Angew. Chem. Int. Ed. 2018,
57, 16832. i) T. C. Atack, R. M. Lecker,; S. P. Cook, J. Am.
Chem. Soc. 2014, 136, 9521. j) A. Fawcett, J. Pradeilles, Y.
Wang, T. Mutsuga, E. L. Myers, V. K. Aggarwal, Science
2017, 357, 283. k) C. Li, J. Wang, L. M. Barton, S. Yu, M.
Tian, D. S. Peters, M. Kumar, A. W. Yu, K. A. Johnson, A.
K. Chatterjee, M. Yan, P. S. Baran, Science 2017, 356,
7355. l) D. Hu, L. Wang, P. Li, Org. Lett. 2017, 19, 2770.
m) D. Hu, L. Wang, P. Li, Org. Lett. 2017, 19, 2770. l) J.
Wang, M. Shang, H. Lundberg, K. S. Feu, S. J. Hecker, T.
Qin, D. G. Blackmond, P. S. Baran, ACS Catal. 2018, 8,
9537. n) J. Hu, G. Wang, S. Li, Z. Shi, Angew. Chem. Int.
Ed. 2018, 57, 15227. o) F. W. Friese, A. Studer, Angew.
Chem. Int. Ed. 2019, 58, 9561. p) H. A. Kerchner, J.
Montgomery, Org. Lett. 2016, 18, 5760. q) J. Huang, W.
Yan, C. Tan, W. Wu, H. Jiang, Chem. Commun. 2018, 54,
1770. r) P. K. Verma, S. A. S, and K. Geetharani, Org. Lett.
2018, 20, 7840. s) G. Zhang, J. Wu, S. Li, S. Cass, S. Zheng,
Org. Lett. 2018, 20, 7893. t) B. S. L. Collins, C. M. Wilson,
C. M. Myers, V. K. Aggarwal, Angew. Chem. Int. Ed. 2017,
56, 11700. u) X. Cui, C.-H. Tan, D. Leow, Org. Biomol.
Chem. 2019, 17, 4689. v) D. Shi, L. Wang, C. Xia, C. Liu,
Angew. Chem. Int. Ed. 2018, 57, 10318. w) F. W. Friese, A.
Studer, Chem. Sci. 2019, 10, 8503.
For catalytic transformation of tertiary alkylborons, see: a)
C. Sandford, V. K. Aggarwal, Chem. Commun. 2017, 53,
5481. b) D. N. Primer, G. A. Molander. J. Am. Chem. Soc.
2017, 139, 9847. c) J. K. Matsui, D. N. Primer, G. A.
Molander, Chem. Sci., 2017, 8, 3512.
For Rh-catalyzed 1,2-addition of tertiary alkylborons to
aldehydes, see: a) A. Ros, V. K. Aggarwal, Angew. Chem.
Int. Ed. 2009, 48, 6289–6292. b) J. Yi, S. O. Badir, R. Alam,
G. A. Molander, Org. Lett. 2019, 21, 4853.
For methodology based on the formation of a secondary a-
alkoxyalkyl anion from aldehyde, see: a) M. Takeda, K.
Yabushita, S. Yasuda, H. Ohmiya, Chem. Commun. 2018,
54, 6776. b) K. Yabushita, A. Yuasa, K. Nagao, H. Ohmiya,
J. Am. Chem. Soc. 2019, 141, 113. c) M. Takeda, A. Mitsui,
K. Nagao, H. Ohmiya, J. Am. Chem. Soc. 2019, 141, 3664.
d) A. Mitsui, K. Nagao, H. Ohmiya, Org. Lett. 2020, 22,
800.
Figure 2D. Initially, the reaction between KHMDS and the
alkylboronate 1 produces the organoborate intermediate A as a
tertiary alkyl anion equivalent.[7b, 12, 13] Then, the reaction of
borate A with 2 forms the 1,2-adduct C with the formation of
aminoboron B. Finally, C reacts with B to produce 3 with
regeneration of KHMDS. When 1 has an ester group at the b-
position, C undergoes an intramolecular substitution to give the
g-lactone and the alkoxide anion, which can act as a base catalyst
for the next cycle. In the case of b-carbonylalkylboronates 1a–g,
a-deprotonation by KHMDS might cause the facile formation of
the organoborate D due to the intramolecular coordination of the
enolate to the boron center (D→E, Figure 2E). This borate would
lead to the facile C–B bond cleavage causing the problematic
racemization before 1,2-addition event. This mechanism
provides the good explanation to the result of Figure 2A.
3. Conclusion
In summary, KHMDS-catalyzed tertiary alkylation of
aldehydes, ketones or imines using tertiary benzylic
organoboronates has been demonstrated. The protocol enabled
the use of tertiary benzylic alkylboronates as tertiary alkyl anions
for the construction of the highly congested contiguous sp3
carbon centers. The mild and transition-metal-free reaction
conditions are attractive features of the protocol. Extending the
scope of the reaction to electrophiles and further mechanistic
studies are in progress.
4. Experimental
Procedure for Lewis Base-Catalyzed Tertiary and Secondary
Alkylations of Aldehydes and Ketones. b-Borylacrylate 1a
(63.6 mg, 0.2 mmol) was placed in a schlenk tube containing a
magnetic stirring bar. The tube was sealed with a rubber septum,
and then evacuated and filled with nitrogen. THF (1.0 mL),
KHMDS (8.0 mg, 0.04 mmol) and benzaldehyde (2a) were
sequentially added to the tube. After 3 h stirring at 80 ˚C, the
reaction mixture was diluted with ethyl acetate (1 mL) then
filtered through a short plug of silica gel with ethyl acetate as an
eluent. After volatiles were removed under reduced pressure,
flash column chromatography on silica gel (100:0–90:10,
hexane/EtOAc) gave 3aa (44.3 mg, 0.175 mmol) in 88% yield.
4-Methyl-4,5-diphenyldihydrofuran-2(3H)-one (3aa). The
product 3aa was purified by flash chromatography on silica gel
(100:0–90:10, hexane/EtOAc) (Table 1, entry 1; 44.3 mg, 0.18
mmol, 88% isolated yield). The diastereomeric ratio is 1:1
determined by 1H NMR.
4.
5.
6.
Acknowledgement
This work was supported by JSPS KAKENHI Grant Number
JP18H01971 to Scientific Research (B), JSPS KAKENHI Grant
Number JP17H06449 (Hybrid Catalysis), and Kanazawa
University SAKIGAKE project 2018 (to H.O.).
7.
For
selected
reviews
on
transition-metal-free
transformation of boron compounds, see: a) S. Roscales, A.
G. Csákÿ, Chem. Soc. Rev. 2014, 43, 8215. b)A. B. Cuenca,
R. Shishido, H. Ito, E. Fernandez, Chem. Soc. Rev. 2017,
46, 415. Our selected papers on organophosphine-
catalyzed reactions with boron compounds, see: c) K.
Nagao, H. Ohmiya, M. Sawamura, J. Am. Chem. Soc. 2014,
136, 10605. d) A. Morinaga, K. Nagao, H. Ohmiya, M.
Sawamura, Angew. Chem. Int. Ed. 2015, 54, 15859; Angew.
Chem. 2015, 127, 16085. e) A. Yamazaki, K. Nagao, T.
Iwai, H. Ohmiya, M. Sawamura, Angew. Chem. Int. Ed.
2018, 57, 3196.
References
1.
For recent arguments for sp3-rich drug compounds, see: a)
M. Algedhi, S. Malhotra, D. L. Selwood, A. W. E. Chan,
Chem. Biol. Drug. Des. 2014, 83, 450. b) A. W. Hung, A.
Ramek, Y. Wang, T. Kaya, J. A. Wilson, P. A. Clemons, D.
W. Young, Proc. Natl. Acad. Sci. USA 2011, 108, 6799. c)
F. Lovering, J. Bikker, C. Humblet, J. Med. Chem. 2009,
52, 6752.
2.
3.
D. G. Hall, Ed. Boronic Acids: Preparation and
Applications in Organic Synthesis, Medicine and
Materials. Ed.; Wiley-VCH: Weinheim, Germany, 2005.
For recent catalytic preparations of tertiary alkylborons,
8.
For reviews on NHC-catalyzed b-functionalization of a,b-
unsaturated carbonyls, see: a) V. Nair, S. Vellalath, B. P.
Babu, Chem. Soc. Rev. 2008, 37, 2691. b) V. Nair, R. S.