10.1002/chem.201705059
Chemistry - A European Journal
COMMUNICATION
[5]
a) B. B. Snider, X. Wu, Org. Lett. 2007, 9, 4913–4915; b) M. Toumi, F.
Couty, J. Marrot, G. Evano, Org. Lett. 2008, 10, 5027–5030; c) A.
Coste, G. Karthikeyan, F. Couty, G. Evano, Synthesis 2009, 17, 2927–
2934; d) B. Malgesini, B. Forte, D. Borghi, F. Quartieri, C. Gennari, G.
Papeo, Chem. Eur. J. 2009, 15, 7922–792; e) Q. Peng, S. Luo, X. Xia,
L. Liu, P. Huang, Chem. Commun. 2014, 50, 1986–1988; f) C. Xu, S.
Luo, A. Wang, P. Huang, Org. Biomol. Chem. 2014, 12, 2859–2863; g)
S. Luo, Q. Peng, C. Xu, A. Wang, P. Huang, Chin. J. Chem. 2014, 32,
757–770; h) X. Deng, K. Liang, X. Tong, M. Ding, D. Li, C. Xia,
Tetrahedron 2015, 71, 3699–3704; i) Z. Mao, H. Geng, T. Zhang, Y.
Ruan, J. Ye, P. Huang, Org. Chem. Front. 2016, 3, 24–37.
application to the first enantioselective formal total synthesis of
(–)-chaetominine (Scheme 2). Applying the above mentioned
two newly established rhodium-catalyzed couplings with the
corresponding allene and allylic carbonate, the same high
enantiomeric excess of 96% was obtained for compound 7. The
alkene could be cleaved through ozonolysis and trapped in situ
by a methanolate anion to provide the corresponding optically
active methyl ester 8 in 72% yield without racemization.[13]
Subsequently, the TBS group was removed under mild
conditions,[14] followed by Dess-Martin oxidation to furnish
aldehyde 9 in 74% yield over two steps. A Fischer indole
synthesis was successfully accomplished by treatment of
[6]
[7]
[8]
a) D. Kumar, S. R. Vemula, G. R. Cook, Green Chem. 2015, 17, 4300–
4306; b) S. R. Vemula, D. Kumar, G. R. Cook, ACS Catal. 2016, 6,
5295−5301; c) C. Lu, D. Chen, H. Chen, H. Wang, H. Jin, X. Huang, J.
Gao, Org. Biomol. Chem. 2017, 15, 5756–5763.
aldehyde
9
with phenylhydrazine hydrochloride under
microwave heating to furnish the enantiomerically pure key
Recent reviews: a) P. Koschker, B. Breit, Acc. Chem. Res. 2016, 49,
1524−1536; b) A. M. Haydl, B. Breit, T. Liang, M. J. Krische, Angew.
Chem. 2017, 129, 11466−11480; Angew. Chem. Int. Ed. 2017,
56, 11312−11325.
intermediate 10 for the total synthesis of (–)-chaetominine.[5d, 5h,
15, 16]
In conclusion, the first rhodium catalytic asymmetric N-H
functionalization of quinazolinones has been achieved. Both
unactivated terminal allenes and racemic allylic carbonates
proved to be suitable coupling partners to furnish branched
chiral N-allylated quinazolinone products with high efficiency.
This methodology is distinguished by low catalyst loading of
1 mol% and excellent chemo-, regio-, and enantioselectivities for
Recent examples: a) P. Spreider, A. Haydl, M. Heinrich, B. Breit,
Angew. Chem. 2016, 128, 15798−15802; Angew. Chem. Int. Ed. 2016,
55, 15569−15573; b) T. M. Beck, B. Breit, Eur. J. Org. Chem. 2016,
5839−5844; c) N. Thieme, B. Breit, Angew. Chem. 2017, 129,
1542−1546; Angew. Chem. Int. Ed. 2017, 56, 1520−1524; d) T. M.
Beck, B. Breit, Angew. Chem. 2017, 129, 1929−1933; Angew. Chem.
Int. Ed. 2017, 56, 1903−1907; e) J. Schmidt, C. Li, B. Breit, Chem. Eur.
J. 2017, 23, 6531−6534; f) V. Khakyzadeh, Y. Wang, B. Breit, Chem.
Commun. 2017, 53, 4966−4968; g) S. Parveen, C. Li, A. Hassan, B.
Breit, Org. Lett. 2017, 19, 2326−2329; h) J. Kuang, S. Parveen, B. Breit,
Angew. Chem. 2017, 129, 8542−18545; Angew. Chem. Int. Ed. 2017,
56, 8422−8425.
a
broad substrate scope. Additionally, application of this
methodology allowed for the first catalytic enantioselective
formal total synthesis of (–)-chaetominine.
[9]
For detailed optimization process, see supporting information.
[10] Selected recent reviews: a) U. Kazmaier (Eds.), Transition Metal
Catalyzed Enantioselective Allylic Substitution in Organic Synthesis,
Springer-Verlag, Berlin, 2012; b) R. L. Grangea, E. A. Clizbeb, P. A.
Evans, Synthesis 2016, 48, 2911−2968; c) N. A. Butt, W. Zhang, Chem.
Soc. Rev. 2015, 44, 7929−7967; d) J. S. Arnold, Q. Zhang, H. M.
Nguyen, Eur. J. Org. Chem. 2014, 4925−4948; e) B. Sundararaju, M.
Achard, C. Bruneau, Chem. Soc. Rev. 2012, 41, 4467−4483; f) Z. Lu, S.
Ma, Angew. Chem. 2008, 120, 264−303; Angew. Chem. Int. Ed. 2008,
47, 258−297; g) B. M. Trost, M. L. Crawley, Chem. Rev. 2003, 103,
2921−2944; h) B. M. Trost, D. L. V. Vranken, Chem. Rev. 1996, 96,
395−422.
Acknowledgements
This work was supported by the DFG. Y. Z. thanks the Sino-
German (CSC-DAAD) Postdoc Scholarship and the National
Natural Science Foundation of China (no. 21602089) for support.
We thank Dr. D. Kratzert for the X-ray diffraction analysis; Dr. M.
Keller for NMR analysis; X. Iwanowa for HPLC analysis; Solvias,
Umicore, BASF and Wacker for generous gifts of chemicals.
Keywords: allene • asymmetric allylation • chaetominine •
quinazolinone • rhodium
[11] Selected recent examples for the synthesis of branched chiral allylic
amines by asymmetric allylic substitutions, rhodium catalysis: a) C. Li,
B. Breit, Chem. Eur. J. 2016, 22, 14655−14663; b) J. S. Arnold, E. T.
Mwenda, H. M. Nguyen, Angew. Chem. 2014, 126, 3762−3766; Angew.
Chem. Int. Ed. 2014, 53, 3688−3692; c) J. S. Arnold, H. M. Nguyen, J.
Am. Chem. Soc. 2012, 134, 8380−8383; d) J. S. Arnold, G. T. Cizio, D.
R. Heitz, H. M. Nguyen, Chem. Commun. 2012, 48, 11531−11533; e) P.
A. Evans, E. A. Clizbe, J. Am. Chem. Soc. 2009, 131, 8722−8723; f) D.
C. Vrieze, G. S. Hoge, P. Z. Hoerter, J. T. Van Haitsma, B. M. Samas,
Org. Lett. 2009, 11, 3140−3142; Iridium catalysis: g) X. Zhang, Z. Yang,
L. Huang, S. You, Angew. Chem. 2015, 127, 1893−1896; Angew.
Chem. Int. Ed. 2015, 54, 1873−1876; h) W. Liu, X. Zhang, L. Dai, S.
You, Angew. Chem. 2012, 124, 5273−5277; Angew. Chem., Int. Ed.
2012, 51, 5183−5187; i) M. Lafrance, M. Roggen, E. M. Carreira,
Angew. Chem. Int. Ed. 2012, 51, 3470−3473; Angew. Chem. 2012, 124,
3527−3530; j) L. M. Stanley, J. F. Hartwig, Angew. Chem. 2009, 121,
7981−7984; Angew. Chem. Int. Ed. 2009, 48, 7841−7844; k) M. J. Pouy,
L. M. Stanley, J. F. Hartwig, J. Am. Chem. Soc. 2009, 131,
11312−11313; l) L. M. Stanley, J. F. Hartwig, J. Am. Chem. Soc. 2009,
131, 8971−8983; palladium catalysis: m) A. Cai, W. Guo, L. Martínez-
Rodríguez, A. W. Kleij, J. Am. Chem. Soc. 2016, 138, 14194−14197; n)
L. Chen, X. Yu, J. Chen, B. Feng, H. Zhang, Y. Qi, W. Xiao, Org. Lett.
2015, 17, 1381−1384; o) B. Zheng, C. Ding, X. Hou, Synlett 2011, 15,
[1]
Selected recent reviews: a) T. Mathew, A. Á. Papp, F. Paknia, S.
Fustero, G. K. S. Prakash, Chem. Soc. Rev. 2017, 46, 3060−3094; b) U.
A. Kshirsagar, Org. Biomol. Chem. 2015, 13, 9336−9352; c) I. Khan, A.
Ibrar, N. Abbas, A. Saeed, Euro. J. Med. Chem. 2014, 76, 193−244; d)
M. E. Welker, G. Kulik, Bioorg. Med. Chem. 2013, 21, 4063–4091; e) M.
Baumann, I. R. Baxendale, Beilstein J. Org. Chem. 2013, 9, 2265–
2319; f) T. P. Selvam, P. V. Kumar, Res. Pharma. 2011, 1, 1–21; g) A.
Witt, J. Bergman, Curr. Org. Chem. 2003, 7, 659−677.
[2]
[3]
a) N. P. McLaughlin, P. Evans, M. Pines, Bioorg. Med. Chem. 2014, 22,
1993–2004; b) S. Kobayashi, M. Ueno, R. Suzuki, H. Ishitani, H. Kim, Y.
Wataya, J. Org. Chem. 1999, 64, 6833–6841; c) J. B. Koepfly, J. F.
Mead, J. A. Brockman, J. Am. Chem. Soc. 1947, 69, 1837–1837.
a) R. Guillon, F. Pagniez, C. Picot, D. Hꢀdou, A. Tonnerre, E. Chosson,
M. Duflos, T. Besson, C. Logꢀ, P. L. Pape, ACS Med. Chem. Lett. 2013,
4, 288−292; b) J. Bartroli, E. Turmo, M. Algueró, E. Boncompte, M. L.
Vericat, L. Conte, J. Ramis, M. Merlos, J. García-Rafanell, J. Forn, J.
Med. Chem. 1998, 41, 1869−1882.
[4]
R. H. Jiao, S. Xu, J.Y. Liu, H. M. Ge, H. Ding, C. Xu, H. L. Zhu, R. X.
Tan, Org. Lett. 2006, 8, 5709−5712.
This article is protected by copyright. All rights reserved.