10.1002/anie.201808840
Angewandte Chemie International Edition
COMMUNICATION
Complex 7 reproduces well the new protocol, giving the 2-
iridaoxetane complex [Ir(PhNC(Ph)NPh)(OC8H12)(Mepy)] (8,
61 % by 1H NMR) by reaction with Mesityl-OH in the presence of
Mepy in benzene (Scheme 4).
Keywords: Oxygenation • dioxygen cleavage • 2-iridaoxetanes •
iridium • peroxide complexes
[1]
a) L. Vilella-Arribas, M. García-Melchor, D. Balcells, A. Lledós, J. A.
López, .S. Sancho, B. E. Villarroya, M. P. del Río, M. A. Ciriano, C.
Tejel, Chem. Eur. J. 2017, 23, 5232-5243; b) I. Gamba, Z. Codolà, J.
Lloret-Fillol, M. Costas, Coord. Chem. Rev. 2017, 334, 2-24; c) C. Tejel,
M. A. Ciriano, Top. Organomet. Chem. 2007, 22, 97-124; d) B. de Bruin,
P. H. M. Budzelaar, A. W. Gal, Angew. Chem. Int. Ed. 2004, 43, 4142-
4157; Angew. Chem. 2004, 116, 4236-4251.
Ph
Ph
N
N
Mepy
Ir
Ph
Ph
Ir
O
Mesityl-OH
N
N
N
Ph
O
O
Ph
[2]
a) S. C. Peck, C. Wang, L. M. K. Dassama, B. Zhang, Yi. Guo, L. J.
Rajakovich, J. M. Bollinger, Jr., C. Krebs, W. A. van der Donk, J. Am.
Chem. Soc. 2017, 139, 2045−2052; b) M. Borrell, M. Costas, J. Am.
Chem. Soc. 2017, 139, 12821-12829; c) W. N. Oloo, L. Que, Jr. Acc.
Chem. Res. 2015, 48, 2612-2621; d) W. Nam, Y.-M. Lee, S. Fukuzumi,
Acc. Chem. Res. 2014, 47, 1146-1154; e) K. P. Bryliakov, E. P. Talsi,
Coord. Chem. Rev. 2014, 276, 73-96; f) M. Costas, Coord. Chem. Rev.
2011, 255, 2912-2932.
8
7
Scheme 4. Synthesis of the 2-iridaoxetane complex 8.
Selective nOe experiments (selnOe) indicate that complex 8
was obtained as the stereoisomer shown in Scheme 4, with the
labile nitrogen of the formamidinate ligand placed trans to the
carbon σ-bonded to iridium. Indeed, DFT calculations on
complex 8 and the related isomer similar to 3 (with Mepy trans to
the σ-C-Ir bond) revealed that the former is 3.9 kcal mol−1 more
stable than the later.
[3]
[4]
See for example: a) E. Tamanaha, B. Zhang, Y. Guo, W.-C. Chang, E.
W. Barr, G. Xing, J. St. Clair, S. Ye, F. Neese, J. M. Bollinger, Jr., C.
Krebs, J. Am. Chem. Soc. 2016, 138, 8862-8874; b) W. A van der Donk,
C. Krebs, J M. Bollinger, Jr., Curr. Opin. Struct. Biol. 2010, 20, 673-683.
a) C. E. Elwell, N. L. Gagnon, B. D. Neisen, D. Dhar, A. D. Spaeth, G.
M. Yee, W. B. Tolman, Chem. Rev. 2017, 117, 2059-2107; b) R. E.
Cowley, L. Tian, E. I. Solomon, Proc. Natl. Am. Soc. 2016, 113, 12035-
12040.
In summary, the results reported here show that iridium
peroxide complexes can be activated by proton transfer/electron
transfer reactions that yield iridium hydroperoxide radicals. If an
olefin is coordinated to the metal center such species easily
undergo O−O bond cleavage and C−O bond formation to give 2-
iridaoxetane complexes. This is a novel mechanistic pathway
disclosed for iridium in the oxygenation of olefins. Indeed, DFT-
calculations (TPSSh-D3/BS2 in CH2Cl2) of the reaction pathways
for other complexes with olefin different from cod, such as 1,4-
norbornadiene and ethylene give very similar reaction profiles
(see Supporting Information).
[5]
[6]
See for example: C. W. Anson, S. Ghosh, S. Hammes-Schiffer, S. S.
Stahl, J. Am. Chem. Soc. 2016, 138, 4186-4193 and references therein.
C.-C. Wang, H.-C. Chang, Y.-C. Lai, H. Fang, C.-C. Li, H.-K.i Hsu, Z.-Y.
Li, T.-S. Lin, T.-S. Kuo, F. Neese, S. Ye, Y.-W. Chiang, M.-L. Tsai, W.-F.
Liaw, W.-Z. Lee, J. Am. Chem. Soc. 2016, 138, 14186-14189.
D. R. Weinberg, C. J. Gagliardi, J. F. Hull, C. F. Murphy, C. A. Kent, B.
Westlake, A. Paul, D. H. Ess, D. G. McCafferty, T. J. Meyer, Chem. Rev.
2012, 112, 4016-4093.
[7]
[8]
See for example: a) H. Baumgarth, G. Meier, T. Braun, B. Braun-Cula,
Eur. J. Inorg. Chem. 2016, 4565-4572; b) M. Feller, E. Ben-Ari, Y.
Diskin-Posner, R. Carmieli, L. Weiner, D. Milstein, J. Am. Chem. Soc.
2015, 137, 4634−4637; c) C. Schiwek, J. Meiners, M. Förster, C.
Würtele, M. Diefenbach, M. C. Holthausen, S. Schneider, Angew.
Chem. 2015, 127, 15486–15490; Angew. Chem. Int. Ed. 2015, 54,
15271-15275; d) A. V. Polukeev, O. F. Wendt, Organometallics 2015,
34, 4262-4271; e) H. Baumgarth, T. Braun, B. Braun, R. Laubenstein, R.
Herrmann, Eur. J. Inorg. Chem. 2015, 3157-3168.
The reported reactions herein can be key steps in the oxy-
functionalization of olefins with air. Also relevant is the
information on the destiny of the second oxygen atom of the
coordinated dioxygen, which is intercepted by the H-atom donor
(Mesityl-OH, p-hydroquinone, and 1,4-cyclohexadiene) to give
water, avoiding thus reactive oxygen species and unselective
side-reactions in aerobic oxygenations. The reported findings
highlight the potentiality of peroxide intermediates in
oxygenation, providing innovative possibilities to enable the
design of new and more selective and/or reactive oxygenation
catalysts.
[9]
L. Vaska, Science 1963, 140, 809-810.
[10] See for example: a) H. Baumgarth, T. Braun, B. Braun, R. Laubenstein,
R. Herrmann, Eur. J. Inorg. Chem. 2015, 3157-3168; b) S. Dürr, B.
Zarzycki, D. Ertler, I. Ivanović-Burmazović, U. Radius, Organometallics
2012, 31, 1730-1742; c) W. I. Dzik, J. M. M. Smits, J. N. H. Reek, B. de
Bruin, Organometallics 2009, 28, 1631-1643; d) M. A. Ciriano, J.
A.López, L. A. Oro, J. J.Pérez-Torrente, M. Lanfranchi, A. Tiripicchio, M.
Tiripicchio-Camellini, Organometallics 1995, 14, 4764-4775.
[11] [IrCl(PPh3)2(C2H4)(O2)]: a) A. van der Ent, A. L. Onderdelinden, Inorg.
Chim. Acta 1973, 7, 203-208; [Ir(cod)(phen)(O2)]+: b) D. J. A. de Waal,
T. I. A. Gerber, W. J. Louw, R. van Eldik, Inorg. Chem. 1982, 21, 2002-
2006; [Ir(N3) (C2H4)(O2)] (N3 = Me3tpa, Me2dpaMe); c) B. de Bruin, T. P.
J. Peters, J. B. M. Wilting, S. Thewissen, J. M. M. Smits, A. W. Gal, Eur.
J. Inorg. Chem. 2002, 2671-2680.
Acknowledgements
The generous financial support from MINECO/FEDER (Projects
CTQ2014-53033-P and CTQ2017-83421-P, C.T.; CTQ2017-
87889-P, A.L. and CTQ2017-89132-P, M.S.), and Gobierno de
Aragón (GA/FEDER, Inorganic Molecular Architecture Group
E08_17R; C.T.) is gratefully acknowledged. M.P.d.R. and P.A.
thank MINECO/FEDER for a JdC contract and a FPI fellowship,
respectively.
[12] a) M. R. Kelley, J.-U. Rohde, Dalton Trans. 2014, 43, 527-537 and
references therein.
[13] S. Thewissen, D. A. Plattner, B. de Bruin, Int. J. Mass Spec. 2006, 249-
250, 446-450.
[14] L. Carlton, J. J. Molapisi, J. Organomet. Chem. 2000, 609, 60-65.
[15] CCDC 1859032 (2•1/2C6H6) and 1859033 (3) contain the
supplementary crystallographic data for this paper. These data can be
This article is protected by copyright. All rights reserved.