1 into electron-rich dienamines6 5 via iminium ion 4, a key
intermediate in iminium ion catalysis.7
pharmacological activities.18 We started our investigations
using compound 6a as the test substrate in order to explore
the viability of an enantioselective cyclization to give
cyclopentene 7a. An initial screening of catalysts I-V in
the absence of any additives revealed catalyst IV to be best
in terms of both reactivity and enantioselectivity (Table 1,
entries 1-5).
The intramolecular Rauhut-Currier (RC) reaction8 gener-
ates chiral cycloalkenes from acyclic precursors bearing two
tethered Michael acceptors. Surprisingly, a transannular
version of this reaction by Moore9 preceded thorough
investigations of Krische10 and Roush11 of intramolecular
RC reactions using alkyl phosphines as catalyst. In 2007,
Miller12 and shortly after Gladysz13 reported enantioselective
intramolecular RC reactions of bis(enones). While Miller
used cysteine derivatives as catalyst, Gladysz employed
phosphines associated with a chiral rhenium complex.
Recently, Scheidt14 made progress in the intermolecular RC
reaction using silyloxyallenes. There is also evidence for the
involvement of RC-type processes in biosynthesis of iri-
dodials.15
Table 1. Catalyst and Solvent Screeninga
Our previous work6h in the area of dienamine catalysis
was concerned with the d4-reactivity of R,ꢀ-unsaturated
aldehydes (1 f 5). Herein, we report the potential of 5 as a
d2-synthon in a mechanistically distinct RC-type reaction.
Since the Jørgensen-Hayashi catalyst (IV) is specific toward
aldehydes, selective activation over other Michael acceptors
such as R,ꢀ-unsaturated ketones might be attainable. More
importantly, this mode of activation should allow the
activation of ꢀ-disubstituted alkenes, thereby providing an
entry into the iridoid class16,17 of natural products, found
widely in plants and insects which possess important
entry catalyst additive solvent time (h) yieldb (%) eec (%)
1
2
3
4
I
II
III
IV
V
IV
IV
IV
IV
IV
IV
VI
VII
IV
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
72
72
72
72
72
3
24
28
28
3
22
n.d.
6
79
-
60
32
57
41
29
32
57
58
58
53
63
88
94
89
93
44
93
87
91
76
54
91
5
(5) (a) Burstein, C.; Glorius, F. Angew. Chem., Int. Ed. 2004, 43, 6205.
(b) Sohn, S. S.; Rosen, E. L.; Bode, J. W. J. Am. Chem. Soc. 2004, 126,
14370. (c) Phillips, E. M.; Wadamoto, M.; Chan, A.; Scheidt, K. A. Angew.
Chem., Int. Ed. 2007, 46, 3107.
6
AcOH CH2Cl2
AcOH CH2Cl2
AcOH PhMe
AcOH MeCN
AcOH CHCl3
AcOH CH2Cl2
AcOH CH2Cl2
AcOH CH2Cl2
AcOH CH2Cl2
7d
8
(6) (a) Chen, S.-H.; Hong, B.-C.; Su, C.-F.; Sarshar, S. Tetrahedron
Lett. 2005, 46, 8899. (b) Bench, B. J.; Liu, C.; Evett, C. R.; Watanabe,
C. M. H. J. Org. Chem. 2006, 71, 9458. (c) Bertelsen, S.; Marigo, M.;
Brandes, S.; Diner, P.; Jørgensen, K. A. J. Am. Chem. Soc. 2006, 128, 12973.
(d) Hong, B.-C.; Wu, M.-F.; Tseng, H.-C.; Liao, J.-H. Org. Lett. 2006, 8,
2217. (e) Utsumi, N.; Zhang, H.; Tanaka, F.; Barbas, C. F., III. Angew.
Chem., Int. Ed. 2007, 46, 1878. (f) Hong, B.-C.; Wu, M.-F.; Tseng, H.-C.;
Huang, G.-F.; Su, C.-F.; Liao, J.-H. J. Org. Chem. 2007, 72, 8459. (g)
Hong, B.-C.; Tseng, H.-C.; Chen, S.-H. Tetrahedron 2007, 63, 2840. (h)
de Figueiredo, R. M.; Fro¨hlich, R.; Christmann, M. Angew. Chem., Int.
Ed. 2008, 47, 1450. (i) Han, B.; He, Z.-Q.; Li, J.-L.; Li, R.; Jiang, K.; Liu,
T.-Y.; Chen, Y.-C. Angew. Chem., Int. Ed. 2009, 48, 5474. (j) Hong, B.-
C.; Nimje, R. Y.; Liao, J.-H. Org. Biomol. Chem. 2009, 7, 3095.
(7) Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. J. Am. Chem.
Soc. 2000, 122, 4243.
9
10
11e
12e
13e
14e,f
4
4
4
5
a Experimental conditions: to a solution of aldehyde 6a (0.19 mmol)
and additive (26 mol %) in 0.5 mL of solvent, 26 mol % of catalyst I-VII
in 1 mL of solvent was added at room temperature. The product was purified
by flash chromatography. b Yield of isolated product. c Determined by HPLC
methods. d Reaction was carried out at +5 °C. e Slow addition (5-10 min)
of aldehyde 6a in CH2Cl2 (1.0 mL) to a solution of the catalyst (20 mol %)
and the additive (20 mol %) in CH2Cl2 (0.5 mL). f 0.36 mmol scale.
(8) (a) Rauhut, M. M.; Currier, H. US Patent 3,074,999, 1963. For an
excellent review, see: (b) Aroyan, C. E.; Dermenci, A.; Miller, S. J
Tetrahedron 2009, 65, 4069.
(9) Erguden, J. K.; Moore, H. W. Org. Lett. 1999, 1, 375.
(10) Wang, L.-C.; Luis, A. L.; Agapiou, K.; Jang, H.-Y.; Krische, M. J.
J. Am. Chem. Soc. 2002, 124, 2402.
The use of acetic acid as an additive led to a considerable
increase in the reaction rate without impairing the enanti-
oselectivity (entry 6). Lowering the temperature to 5 °C
improved the enantioselectivity at the expense of reactivity
and yield (entry 7). Switching solvents to toluene or
acetonitrile (entries 8 and 9) again had a negative influence
on the reactivity whereas the use of chloroform gave
comparable results (entry 10). Slow addition of the substrate
to a solution of the catalyst IV was the key to lowering the
(11) (a) Frank, S. A.; Mergott, D. J.; Roush, W. R. J. Am. Chem. Soc.
2002, 124, 2404. (b) Thalji, R. K.; Roush, W. R. J. Am. Chem. Soc. 2005,
127, 16778.
(12) Aroyan, C. E.; Miller, S. J. J. Am. Chem. Soc. 2007, 129, 256.
(13) Seidel, F.; Gladysz, J. A. Synlett 2007, 986.
(14) Reynolds, T. E.; Binkley, M. S.; Scheidt, K. A. Org. Lett. 2008,
10, 2449.
(15) Lorenz, M.; Boland, W.; Dettner, K. Angew. Chem., Int. Ed. 1993,
32, 912.
(16) Unelius performed formal [4 + 2]-cycloadditions with 8-oxocitral
and stoichiometric amounts of chiral secondary amines leading to iridoids:
Santangelo, E. M.; Liblikas, I.; Mudalige, A.; To¨rnroos, K. W.; Norrby,
(18) (a) Pasteels, J. M.; Rowell-Rahier, M.; Braekman, J.-C.; Daloze,
D. Biochem. Syst. Ecol. 1984, 12, 395. (b) Boros, C. A.; Stermitz, F. R. J.
Nat. Prod. 1990, 53, 1055. (c) Boros, C. A.; Stermitz, R. R. J. Nat. Prod.
1991, 54, 1173. (d) Dawson, G. W.; Pickett, J. A.; Smiley, W. M. Bioorg.
Med. Chem. 1996, 4, 351.
P.-O.; Unelius, C. R. Eur. J. Org. Chem. 2008, 5915
.
(17) (a) Tundis, R.; Loizzo, M. R.; Menichini, F.; Statti, G. A.;
Menichini, F. Mini-ReV. Med. Chem. 2008, 8, 399. (b) Nangia, A.; Prasuna,
G.; Rao, B. Tetrahedron 1997, 53, 14507
Org. Lett., Vol. 11, No. 18, 2009
.
4117