ACS Catalysis
Page 8 of 10
by Oxidative Quenching of Photoredox Catalysts. J. Am. Chem. Soc.
2011, 133, 4160-4163.
1
2
3
4
5
6
7
8
3. Early examples of Kharasch addition using radical initiators:
(a) Kharasch, M. S.; Jensen, E. V.; Urry, W. H. Addition of Carbon
Tetrachloride and Chloroform to Olefins. Science 1945, 102, 128. (b)
Kharasch, M. S.; Skell, P. S.; Fischer, P. Reactions of Atoms and Free
Radicals in Solution. XII. The Addition of Bromo Esters to Olefins. J.
Am. Chem. Soc. 1948, 70, 1055-1059.
Notes
There are no conflicts to declare.
ASSOCIATED CONTENT
Supporting Information
4. Representative reviews on metal-catalyzed atom-transfer
radical additions: (a) Iqbal, J.; Bhatia, B.; Nayyar, N. K. Transition
Metal-Promoted Free-Radical Reactions in Organic Synthesis: The
Formation of Carbon-Carbon Bonds. Chem. Rev. 1994, 94, 519-564.
(b) Clark, A. J. Atom Transfer Radical Cyclisation Reactions Mediated
by Copper Complexes. Chem. Soc. Rev. 2002, 31. 1-11. (c) Pintauer,
T.; Matyjaszewski, K. Atom Transfer Radical Addition and
Polymerization Reactions Catalyzed by ppm Amounts of Copper
Complexes. Chem. Soc. Rev. 2008, 37, 1087-1097. (d) Minisci, F. Free-
Radical Additions to Olefins in the Presence of Redox Systems. Acc.
Chem. Res. 1975, 8, 165-171. (e) Gossage, R. A.; van de Kuil, L. A.;
van Koten, G. Diaminoarylnickel(II) “Pincer” Complexes: Mechanistic
Considerations in the Kharasch Addition Reaction, Controlled
Polymerization, and Dendrimeric Transition Metal Catalysts. Acc.
Chem. Res. 1998, 31, 423-431. (f) Studer, A.; Curran, D. P. Catalysis
of Radical Reactions: A Radical Chemistry Perspective. Angew.
Chem., Int. Ed. 2016, 55, 58-102.
5. For examples, see: (a) Yang, D.; Yan, Y.-L.; Zheng, B.-F.;
Gao, Q.; Zhu, N.-Y. Copper(I)-Catalyzed Chlorine Atom Transfer
Radical Cyclization Reactions of Unsaturated α-Chloro β-Keto Esters.
Org. Lett., 2006, 8, 5757-5760. (b) Snider, B. B.; Patricia, J. J.; Kates,
S. A. Mechanism of Manganese(III)-Based Oxidation of β-Keto Esters.
J. Org. Chem. 1988, 53, 2137-2143. (c) Hayes, T. K.; Villani, R.;
Weinreb, S. M. Exploratory Studies of the Transition Metal Catalyzed
Intramolecular Cyclization of Unsaturated α,α-Dichloro Esters, Acids,
and Nitriles. J. Am. Chem. Soc. 1988, 110, 5533-5543. (d) Ng, F.-N.;
Lau, Y.-F.; Zhou, Z.; Yu, W.-Y. [RhIII(Cp*)]-Catalyzed Cascade
Arylation and Chlorination of α -Diazocarbonyl Compounds with
Arylboronic Acids and N-Chlorosuccinimide for Facile Synthesis of α-
Aryl-α-chloro Carbonyl Compounds. Org. Lett. 2015, 17, 1676-1679.
(e) Bellus, D. Copper-Catalyzed Additions of Organic Polyhalides to
Olefins: A Versatile Synthetic Tool. Pure Appl. Chem. 1985, 57, 1827-
1838. (f) McGonagle, F. I.; Brown, L.; Cooke, A.; Sutherland, A. A
Three-Step Tandem Process for the Synthesis of Bicyclic γ-Lactams.
Org. Biol. Chem. 2010, 8, 3418-3425. An example using less reactive,
monochlorinated substrate under high temperature. (g) Lee, G. M.;
Parvez M; Weinreb, S. M. Intramolecular Metal Catalyzed Kharasch
Cyclizations of Olefinic α-Halo Esters and Acids. Tetrahedron 1988,
44, 4671-4678.
The Supporting Information is available free of charge on the ACS
Publications website.
Experimental procedures and characterization data (PDF)
Crystallography data for 19 (CIF)
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ACKNOWLEDGMENT
Financial support was provided by Cornell University and NIGMS
(R01GM130928). S.L. thanks NSF for a CAREER award (CHE-
1751839). This study made use of the Cornell Center for Materials
Research Shared Facilities (DMR-1719875) and the NMR facility
(CHE-1531632) supported by NSF. We thank Dr. Samantha
MacMillan for help with X-ray crystal structure collection and
determination.
REFERENCES
1. For representative reviews, see: (a) Chemler, S. R.; Fuller, P.
H. Heterocycle Synthesis by Copper Facilitated Addition of
Heteroatoms to Alkenes, Alkynes and Arenes. Chem. Soc. Rev. 2007,
36, 1153-1160. (b) McDonald, R. I.; Liu, G.; Stahl, S. S. Palladium(II)-
Catalyzed Alkene Functionalization via Nucleopalladation:
Stereochemical Pathways and Enantioselective Catalytic Applications.
Chem. Rev. 2011, 111, 2981-3019. (c) Yin, G.; Mu, X.; Liu, G.
Palladium(II)-Catalyzed Oxidative Difunctionalization of Alkenes:
Bond Forming at a High-Valent Palladium Center. Acc. Chem. Res.
2016, 49, 2413-2423. (d) Courant, T.; Masson, G. Recent Progress in
Visible-Light
Photoredox-Catalyzed
Intermolecular
1,2-
Difunctionalization of Double Bonds via an ATRA-Type Mechanism.
J. Org. Chem. 2016, 81, 6945-6952. (e) Romero, R. M.; Wöste, T. H.;
Muñiz, K. Vicinal Difunctionalization of Alkenes with Iodine(III)
Reagents and Catalysts. Chem. Asian J. 2014, 9, 972-983. (f)
Williamson, K. S.; Michaelis, D. J.; Yoon, T. P. Advances in the
Chemistry of Oxaziridines. Chem. Rev. 2014, 114, 8016-8036. (g)
Derosa, J.; Tran, V. T.; van der Puyl, V. A.; Engle, K. M. Carbon–
Carbon π -Bonds as Conjunctive Reagents in Cross-Coupling.
Aldrichimica Acta 2018, 51. 21-32. (h) Lan, X.-W.; Wang, N.-X.; Xing,
Y. Recent Advances in Radical Difunctionalization of Simple Alkenes.
Eur. J. Org. Chem. 2017, 5821-5851.
2. For examples of intermolecular haloalkylation of alkenes, see:
(a) Wallentin, C.-J.; Nguyen, J. D.; Finkbeiner, P.; Stephenson, C. R.
J. Visible Light-Mediated Atom Transfer Radical Addition via
Oxidative and Reductive Quenching of Photocatalysts. J. Am. Chem.
Soc. 2012, 134, 8875-8884. (b) Chen, B.; Fang, C.; Liu P.; Ready, J.
M. Rhodium‐Catalyzed Enantioselective Radical Addition of CX4
Reagents to Olefins. Angew. Chem., Int. Ed. 2017, 56, 8780-8784. (c)
Yang, D.; Gu, S.; Yan, Y.-L.; Zhu, N.-Y.; Cheung, K.-K. Highly
Enantioselective Atom-Transfer Radical Cyclization Reactions
Catalyzed by Chiral Lewis Acids. J. Am. Chem. Soc. 2001, 123, 8612-
8613. (d) Curran, D. P.; Chen, M. H.; Spletzer, E.; Seong, C. M.;
Chang, C. T. Atom Transfer Addition and Annulation Reactions of
Iodomalonates. J. Am. Chem. Soc. 1989, 111, 8872-8878. (e) Beniazza,
R.; Douarre, M.; Lastécouèresa, D.; Vincent, J.-M. Metal-Free and
Light-Promoted Radical Iodotrifluoromethylation of Alkenes with
Togni Reagent as the Source of CF3 and Iodine. Chem. Commun. 2017,
53, 3547-3550. (f) Dengiz,C.; Caliskan, R.; Balci, M.
Chloroacetonylation of C=C Double Bonds Promoted by
Manganese(III) Acetate. Tetrahedron Lett. 2012, 53, 550-552. (g)
Nguyen, J. D.; Tucker, J. W.; Konieczynska, M. D.; Stephenson, C. R.
J. Intermolecular Atom Transfer Radical Addition to Olefins Mediated
6. For representative reviews, see: (a) Snider, B. B. Manganese
(III)‐Based Oxidative Free‐Radical Cyclizations. Chem. Rev. 1996, 96,
339-363. (b) Snider, B. B. Mechanisms of Mn(OAc)3-Based Oxidative
Free-Radical Additions and Cyclizations. Tetrahedron 2009, 65,
10738-10744.
7. For examples, see: (a) Corey, E. J.; Kang, M. New and General
Synthesis of Polycyclic γ-Lactones by Double Annulation. J. Am.
Chem. Soc. 1984, 106, 5384-5385. (b) Snider, B. B.; Mohan, R.; Kates,
S. A. Manganese(III)-Based Oxidative Free-Radical Cyclization.
Synthesis of (±)-Podocarpic Acid. J. Org. Chem. 1985, 50, 3659-3661.
(c) Ernst, A. B.; Fristad, W. E. Intramolecular Lactone Annulation of
Activated Acids with Mn(III). Tetrahedron Lett. 1985, 26, 3761-3764.
(d) Kates, S. A.; Dombroski, M. A.; Snider, B. B. Manganese(III)-
Based Oxidative Free-Radical Cyclization of Unsaturated β-Keto
Esters, 1,3-Diketones, and Malonate Diesters. J. Org. Chem. 1990, 55,
2427-2436. (e) Phillips, E. M.; Roberts, J. M; Scheidt, K. A. Catalytic
Enantioselective Total Syntheses of Bakkenolides I, J, and S:
Application of a Carbene-Catalyzed Desymmetrization. Org. Lett.
2010, 12, 2830-2833. (f) Wang, X.; Ma, Z.; Lu, J.; Tan X.; Chen, C.
Asymmetric Synthesis of Ageliferin. J. Am. Chem. Soc. 2011, 133,
15350-15353.
8. Related to our work, Mn-mediated radical cyclization with
1,3-dicarbonyls has also been achieved under electrochemical
ACS Paragon Plus Environment