572
G. Bellavance et al.
LETTER
(6) (a) L’Heureux, A.; Beaulieu, F.; Bennett, C.; Bill, D. R.;
References and Notes
Clayton, S.; LaFlamme, F.; Mirmehrabi, M.; Tadayon, S.;
Tovell, D.; Couturier, M. J. Org. Chem. 2010, 75, 3401.
(b) Beaulieu, F.; Beauregard, L.-P.; Courchesne, G.;
Couturier, M.; LaFlamme, F.; L’Heureux, A. Org. Lett.
2009, 11, 5050.
(1) For selected reviews on various fluorination methods and the
impact of C–F bonds in various fields, see: (a) Kirk, K. L.
Org. Process Res. Dev. 2008, 12, 305. (b) Purser, S.;
Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev.
2008, 37, 320. (c) Landelle, G.; Bergeron, M.; Turcotte-
Savard, M.-O.; Paquin, J.-F. Chem. Soc. Rev. 2011, 40,
2867. (d) Ma, J.-A.; Cahard, D. Chem. Rev. 2008, 108, PR1.
(e) Ma, J.-A.; Cahard, D. Chem. Rev. 2004, 104, 6119.
(f) Grushin, V. V.; Tomashenko, O. A. Chem. Rev. 2011,
111, 4475. (g) Nie, J.; Guo, H.-C.; Cahard, D.; Ma, J.-A.
Chem. Rev. 2011, 111, 455. (h) Cartwright, D. In
Organofluorine Chemistry; Banks, R. E.; Smart, B. E.;
Tatlow, J. C., Eds.; Plenum: New York, 1994. (i) Kirsh, P.
In Modern Fluoroorganic Chemistry; Wiley-VCH:
Weinheim, 2004. (j) Müller, K.; Faeh, C.; Diederich, F.
Science 2007, 317, 1881. (k) Hagmann, W. K. J. Med.
Chem. 2008, 51, 4359. (l) Bégué, J.-P.; Bonnet-Delphon, D.
J. Fluorine Chem. 2006, 127, 992. (m) Kirk, K. L.
J. Fluorine Chem. 2006, 127, 1013. (n) Hiyama, T. In
Organofluorine Compounds: Chemistry and Applications;
Yamamoto, H., Ed.; Springer-Verlag: Berlin, 2000.
(2) (a) Umemoto, T.; Singh, R. P.; Xu, Y.; Saito, N. J. Am.
Chem. Soc. 2010, 132, 18199. (b) Tang, P.; Wang, W.;
Ritter, T. J. Am. Chem. Soc. 2011, 133, 11482. (c) Ni, C.;
Hu, J. Synlett 2011, 770. (d) Yin, J.; Zarkowsky, D. S.;
Thomas, D. W.; Zhao, M. M.; Huffman, M. A. Org. Lett.
2004, 6, 1465; and references cited therein.
(3) DAST: (a) Middleton, W. J. J. Org. Chem. 1975, 40, 574.
(b) Hudlicky, M. Org. React. (N. Y.) 1988, 35, 513.
Deoxo-Fluor: (c) Lal, G. S.; Pez, G. P.; Pesaresi, R. J.;
Prozonic, F. M. Chem. Commun. 1999, 215. (d) Lal, G. S.;
Pez, G. P.; Pesaresi, R. J.; Prozonic, F. M.; Cheng, H. J. Org.
Chem. 1999, 64, 7048. (e) For a review on these reagents
and their applications, see: Singh, R. P.; Shreeve, J. M.
Synthesis 2002, 2561.
(4) For selected examples, see: (a) Weiberth, F. J.; Gill, H. S.;
Jiang, Y.; Lee, G. E.; Lienard, P.; Pemberton, C.; Powers, M.
R.; Subotkowski, W.; Tomasik, W.; Vanasse, B. J.; Yu, Y.
Org. Process Res. Dev. 2010, 14, 623. (b) Rossi, F.;
Corcella, F.; Saverio Caldarelli, F.; Heidempergher, F.;
Marchionni, C.; Auguadro, M.; Cattaneo, M.; Ceriani, L.;
Visentin, G.; Ventrella, G.; Pinciroli, V.; Ramella, G.;
Candiani, I.; Bedeschi, A.; Tomasi, A.; Kline, B. J.;
Martinez, C. A.; Yazbec, D.; Kucera, D. J. Org. Process Res.
Dev. 2008, 12, 322. (c) Negi, D. S.; Köppling, L.; Lovis, K.;
Abdallah, R.; Geisler, J.; Budde, U. Org. Process Res. Dev.
2008, 12, 345. (d) Königsberger, K.; Chen, G.-P.; Vivelo, J.;
Lee, G.; Fitt, J.; McKenna, J.; Jenson, T.; Prasad, K.; Repič,
O. Org. Process Res. Dev. 2002, 6, 665.
(7) Differential scanning calorimetry (DSC) analysis of TFFH
revealed a generation of 146 J/g at Tmax of 370 °C. See
reference 6a for comparative data with other reagents.
(8) (a) Carpino, L. A.; El-Faham, A. J. Am. Chem. Soc. 1995,
117, 4101. (b) El-Faham, A.; Khattab, S. N. Synlett 2009,
886.
(9) For the use of chloroiminium salts as dehydrating agents,
see: (a) Fujisawa, T.; Tajima, K.; Sato, T. Bull. Chem. Soc.
Jpn. 1983, 56, 3529. (b) Isobe, T.; Ishikawa, T. J. Org.
Chem. 1999, 64, 6984. (c) Fujisawa, T.; Mori, T.;
Fukumoto, K.; Sato, T. Chem. Lett. 1982, 11, 1891.
(10) Et3N–3HF is a commercially available liquid that can be
handled in borosilicate glassware up to 150 °C without
etching. See: (a) Haufe, G. J. Prakt. Chem. 1996, 338, 99.
(b) Franz, R. J. Fluorine Chem. 1980, 15, 423.
(c) McClinton, M. A. Aldrichim. Acta 1995, 28, 31.
(11) This conclusion can only be applied to a subset of the
reactions studied as this behavior could be substrate
dependent.
(12) (a) Hayashi, H.; Sonoda, H.; Fukumura, K.; Nagata, T.
Chem. Commun. 2002, 1618. (b) Sonoda, H.; Fukumura,
K.; Takano, Y.; Okada, K.; Hayashi, H.; Takahashi, A.;
Nagata, T. Eur. Patent, EP895991A2, 2001.
(13) 19F NMR experiments were collected using a Bruker-
Biospin 5 mm BBFO probe on Bruker AVANCE III NMR
spectrometer operating at 400 MHz. Limit of detection
evaluated at 0.1%.
(14) The activity of commercial TFFH was found to vary among
suppliers. Material from TCI and Oakwood consistently
provided reproducible results.
(15) Toluene provided slightly better results but the formation of
a gum was deemed undesirable especially in potential scale
up of this reaction.
(16) The mildest of the sulfur fluoride based reagents, XtalFluor,
was found to transform carbonyls into gem-difluoro moieties
at ambient temperatures. This reaction in bifunctional
substrates could be mitigated by using cryogenic
temperatures (–78 °C).
(17) Typical Procedure: The alcohol (1 equiv) was dissolved in
EtOAc (concentration of 0.5 M) at ambient temperature. The
solution was cooled to 5 °C and Et3N⋅3HF (2 equiv) and
Et3N (2 equiv) were successfully added in a dropwise
manner. After stirring for 5 min, TFFH was added in one
portion (1.5 equiv). The solution was then allowed to stir at
the necessary temperature. Upon completion, the reaction
was quenched with sat. NaHCO3 to pH 7 and diluted with
additional EtOAc. Layers were separated and the organic
layer was concentrated to a crude residue. The crude residue
could be purified by flash chromatography or partitioned
between MTBE and H2O to remove the tetramethylurea by-
product.
(5) (a) Cochran, J. Chem. Eng. News 1979, 57 (12), 74.
(b) Middleton, W. J. Chem. Eng. News 1979, 57 (21), 43.
(c) Messina, P. A.; Mange, K. C.; Middleton, W. J.
J. Fluorine Chem. 1989, 42, 137.
Synlett 2012, 23, 569–572
© Thieme Stuttgart · New York