Published on Web 05/21/2003
Enantioselective Total Synthesis of (+)-Obtusenyne
Michael T. Crimmins* and Mark T. Powell
Contribution from the Department of Chemistry, Venable and Kenan Laboratories of Chemistry,
UniVersity of North Carolina
Received December 30, 2002; E-mail: crimmins@email.unc.edu
Abstract: A total synthesis of the laurencia metabolite (+)-obtusenyne has been completed. The key steps
include a Sharpless kinetic resolution and an asymmetric glycolate alkylation to establish the stereogenic
centers adjacent to the ether linkage and a ring-closing metathesis reaction to construct the nine-membered
ether without the aid of a cyclic conformational constraint. The synthesis was completed in 20 linear steps
from commercially available 1,5-hexadiene-3-ol.
The oceans have become a rich source of topographically
unique molecules, many of which have potential for the
treatment of human diseases. Invertebrates such as sponges,
coral, and dinoflagellates are now a common origin of interesting
natural products. Three main classes of compounds that contain
medium ring ethers have been identified from marine sources.
The ladder ether toxins include such ostentatious structures as
brevetoxins A1 and B,2 and the ciguatoxins,3 all of which contain
medium ring ethers in a complex polyether skeleton. The
members of the topographically unique eunicellin class of
marine metabolites represented by astrogorgin,4 sclerophytin,5
4-deoxyasbestinin A6 display a nine-membered ether embedded
in a tricyclic or tetracyclic scaffold. Finally, the Laurencia red
algae, in particular, have produced a large number of metabolites
containing medium ring ether acetogenins.7 These C15 metabo-
lites include a variety of ring sizes such as those found in
laurencin,8 trans-isoprelaurefucin,9 isolaurallene,10 and ob-
tusenyne.11,12,13 The identification of these interesting metabo-
lites has inspired a number of clever solutions to the construction
of medium ring ethers. Recent examples of synthesis of nine-
membered ether metabolites include Denmark’s synthesis of
brasilenyne14 through a new intramolecular cross-coupling to
form the nine-membered ring, Overman’s synthesis of sclero-
phytin15 via an intramolecular Nozaki-Kishi reaction to con-
struct the oxonin, Murai’s total synthesis of obtusenyne
exploiting a medium ring lactonization16 and the synthesis of
isolaurallene through a nine-membered ring-closing metathesis
from our laboratory.17
Figure 1. Representative medium ring ether marine metabolites.
(1) Shimizu, Y.; Chou, H. N.; Bando, H.; Van Duyne, G.; Clardy, J. J. Am.
Chem. Soc. 1986, 108, 514-515.
As part of a continuing program directed toward the develop-
ment of a general strategy for the construction of medium ring
ether metabolites, we wished to extend the strategy we employed
in the synthesis of laurencin,18 prelaureatin,19 and isolaurallene17
to a metabolite with a nine-membered ring with substituents in
a trans orientation at the R and R′ positions to the ether linkage.
Obtusenyne seemed a suitable test given that its lone synthesis
(2) Lin, Y. Y.; Risk, M.; Ray, S. M.; Van Engen, D.; Clardy, J.; Golik, J.;
James, J. C.; Nakanishi, K. J. Am. Chem. Soc. 1981, 103, 6773-6775.
(3) Murata, M.; Legrand, A. M.; Ishibashi, Y.; Yasumoto, T. J. Am. Chem.
Soc. 1989, 111, 8929-8931. Murata, M.; Legrand, A. M.; Ishibashi, Y.;
Fukui, M.; Yasumoto, T. J. Am. Chem. Soc. 1990, 112, 4380-4386.
(4) Fusetani, N.; Nagata, H.; Hirota, H.; Tsuyuki, T. Tetrahedron Lett. 1989,
30, 7079-7082.
(5) Sharma, P.; Alam, M. J. Chem. Soc., Perkin Trans. 1 1988, 2537-2540.
Alam, M.; Sharma, P.; Zektzer, A. S.; Martin, G. E.; Ji, X.; van der Helm,
D. J. Org. Chem. 1989, 54, 1896-1900.
(6) Morales, J. J.; Lorenzo, D.; Rodriguez, A. D. J. Nat. Prod. 1991, 54, 1368-
1382.
(14) Denmark, S. E.; Yang, S.-M. J. Am. Chem. Soc. 2002, 124, 15 196-15 197.
(15) Gallou, F.; MacMillan, D. W. C.; Overman, L. E.; Paquette, L. A.;
Pennington, L. D.; Yang, J. Org. Lett. 2001, 3, 135-137. MacMillan, D.
W. C.; Overman, L. E.; Pennington, L. D. J. Am. Chem. Soc. 2001, 123,
9033-9044.
(16) Fujiwara, K.; Awakura, D.; Tsunashima, M.; Nakamura, A.; Honma, T.;
Murai, A. J. Org. Chem. 1999, 64, 2616.
(17) Crimmins, M. T.; Emmitte, K. A. J. Am. Chem. Soc. 2001, 123, 1533-
1534. Crimmins, M. T.; Emmitte, K. A.; Choy, A. L. Tetrahedron 2002,
58, 1817-1834.
(18) Crimmins, M. T.; Emmitte, K. A. Organic Lett. 1999, 1, 2029-2032.
Crimmins, M. T.; Choy, A. L. J. Am. Chem. Soc. 1999, 121, 5663-5660.
(19) Crimmins, M. T.; Tabet, E. A. J. Am. Chem. Soc. 2000, 122, 5473-5476.
(7) Faulkner, J. D. Nat. Prod. Rep. 2002, 19, 1-48.
(8) Irie, T.; Suzuki, M.; Masamune, T. Tetrahedron Lett. 1965, 1091. Irie, T.;
Suzuki, M.; Masamune, T. Tetrahedron 1968, 24, 4193.
(9) Kurosawa, E.; Fukuzawa, A.; Irie, T. Tetrahedron Lett. 1973, 42, 4135.
(10) Kurata, K.; Furusaki, A.; Suehiro, K.; Katayama, C.; Suzuki, T. Chem.
Lett. 1982, 1031.
(11) King, T. J.; Imre, S.; Oztunc, A.; Thomson, R. H.; Tetrahedron Lett. 1979,
1453.
(12) Howard, B. M.; Schulte, G. R.; Fenical, W.; Solheim, B.; Clardy, J.
Tetrahedron 1980, 36, 1747.
(13) Norte, M.; Gonzalez, A. G.; Cataldo, F.; Rodriguez, M. L.; Brito, I.
Tetrahedron 1991, 47, 9411.
9
7592
J. AM. CHEM. SOC. 2003, 125, 7592-7595
10.1021/ja029956v CCC: $25.00 © 2003 American Chemical Society