Organic Letters
Letter
A New Imidazole-Containing Imidazolidinone Catalyst for Organo-
catalyzed Asymmetric Conjugate Addition of Nitroalkanes to
Aldehydes. Adv. Synth. Catal. 2007, 349, 740. (c) Zhang, Z.; Xie, F.;
Jia, J.; Zhang, W. Chiral Bicycle Imidazole Nucleophilic Catalysts:
Rational Design, Facile Synthesis, and Successful Application in
Asymmetric Steglich Rearrangement. J. Am. Chem. Soc. 2010, 132,
15939. (d) Li, Y.; Giulionatti, M.; Houghten, R. A. Macrolactonization
of Peptide Thioesters Catalyzed by Imidazole and Its Application in the
Synthesis of Kahalalide B and Analogues. Org. Lett. 2010, 12, 2250.
(e) Khan, M. N.; Pal, S.; Karamthulla, S.; Choudhury, L. H. Imidazole as
organocatalyst for multicomponent reactions: diversity oriented
synthesis of functionalized hetero- and carbocycles using in situ-
generated benzylidenemalononitrile derivatives. RSC Adv. 2014, 4,
3750.
promoted amide hydrolysis. Acc. Chem. Res. 1992, 25, 481. (b) Skorey,
K. I.; Somayaji, V.; Brown, R. S. The influence of a carboxylate group on
the rate of O-acylation of 2-hydroxymethylimidazoles by a strained
amide. J. Am. Chem. Soc. 1988, 110, 5205. (c) Somayaji, V.; Keillor, J.;
Brown, R. S. Model for the aspartate proteinases. Hydrolysis of a
distorted amidecatalyzed by dicarboxylic acids capable of forming cyclic
anhydrides. J. Am. Chem. Soc. 1988, 110, 2625. (d) Mujika, J. I.;
Mercero, J. M.; Lopez, X. Water-Promoted Hydrolysis of a Highly
Twisted Amide: Rate Acceleration Caused by the Twist of the Amide
Bond. J. Am. Chem. Soc. 2005, 127, 4445. (e) Wang, B.; Cao, Z. Acid-
Catalyzed Reactions of Twisted Amides in Water Solution: Competi-
tion between Hydration and Hydrolysis. Chem. - Eur. J. 2011, 17, 11919.
(f) Roy, O.; Caumes, C.; Esvan, Y.; Didierjean, C.; Faure, S.;
Taillefumier, C. The tert-Butyl Side Chain: A Powerful Means to
Lock Peptoid Amide Bonds in the Cis Conformation. Org. Lett. 2013,
15, 2246. (g) Elashal, H. E.; Raj, M. Site-selective chemical cleavage of
peptide bonds. Chem. Commun. 2016, 52, 6304. (h) Elashal, H. E.;
Cohen, R. D.; Elashal, H. E.; Raj, M. Oxazolidinone-Mediated Sequence
Determination of One-Bead One-Compound Cyclic Peptide Libraries.
Org. Lett. 2018, 20, 2374.
(6) (a) Janssen-Muller, D.; Schlepphorst, C.; Glorius, F. Privileged
̈
chiral N-heterocyclic carbene ligands for asymmetric transition-metal
catalysis. Chem. Soc. Rev. 2017, 46, 4845. (b) Peris, E. Smart N-
Heterocyclic Carbene Ligands in Catalysis. Chem. Rev. 2018, 118, 9988.
(7) (a) Bu, X. R.; Li, H.; Van Derveer, D.; Mintz, E. A. A novel
approach to synthesis of tricyanovinylthiophene for heterocyclic
imidazole nonlinear optical chromophores. Tetrahedron Lett. 1996,
37, 7331. (b) Sakuragi, R.; Ishige, O.; Fukusaka, K. EP 1684115 A1 Jul
26, 2006. (c) Fridman, N.; Kaftory, M.; Eichen, Y.; Speiser, S.
Spectroscopy, photophysical and photochemical properties of
bisimidazole derivatives. J. Photochem. Photobiol., A 2007, 188, 25.
(8) (a) Ohta, S.; Tsuno, N.; Nakamura, S. Total syntheses of naamine
A and naamidine A, marine imidazole alkaloids. Heterocycles 2000, 53,
(14) Winkler, F. K.; Dunitz, J. D. The non-planar amide group. J. Mol.
Biol. 1971, 59, 169.
(15) (a) Zeng, Z.; Jin, H.; Xie, J.; Tian, B.; Rudolph, M.; Rominger, F.;
Hashmi, A. S. K. α-Imino Gold Carbenes from 1,2,4-Oxadiazoles:
Atom-Economical Access to Fully Substituted 4-Aminoimidazoles. Org.
Lett. 2017, 19, 1020. (b) Yamada, S. Structure and Reactivity of a Highly
Twisted Amide. Angew. Chem., Int. Ed. Engl. 1993, 32, 1083. (c) Liu, C.;
Shi, S.; Liu, Y.; Liu, R.; Lalancette, R.; Szostak, R.; Szostak, M. The Most
Twisted Acyclic Amides: Structures and Reactivity. Org. Lett. 2018, 20,
7771. (d) Kirby, A. J.; Komarov, I. V.; Wothers, P. D.; Feeder, N. The
Most Twisted Amide: Structure and Reactions. Angew. Chem., Int. Ed.
1998, 37, 785. (e) Tani, K.; Stoltz, B. M. Synthesis and structural
analysis of 2-quinuclidonium tetrafluoroborate. Nature 2006, 441, 731.
̈ ̇
̆
1939. (b) Ucu̧ cu, U.; Karaburun, N. G.; Isi̧ kdag, I. Synthesis and
analgesic activity of some 1-benzyl-2-substituted-4,5-diphenyl-1H-
imidazole derivatives. Farmaco 2001, 56, 285.
(9) Staab, H. A. New Methods of Preparative Organic Chmistry IV.
Syntheses Using Heterocyclic Amides (Azolides). Angew. Chem., Int. Ed.
Engl. 1962, 1, 351.
(10) (a) Fife, T. H. Steric Effects in the Hydrolysis of N-
Acylimidazoles and Esters of p-Nitrophenol. J. Am. Chem. Soc. 1965,
87, 4597. (b) Fee, J. A.; Fife, T. H. Steric and Electronic Effects in the
Hydrolysis of N-Acylimidazoles and N-Acylimidazolium Ions. J. Org.
́
(16) (a) Szostak, M.; Aube, J. Chemistry of Bridged Lactams and
Related Heterocycles. Chem. Rev. 2013, 113, 5701. (b) Szostak, R.;
Szostak, M. Chemistry of Bridged Lactams: Recent Developments.
Molecules 2019, 24, 274.
̈
́
Chem. 1966, 31, 2343. (c) Zaramella, S.; Stromberg, R.; Yeheskiely, E.
(17) Szostak, R.; Aube, J.; Szostak, M. Determination of Structures and
Stability Studies of N-Acylimidazoles. Eur. J. Org. Chem. 2002, 2002,
2633. (d) Takahashi, Y.; Ikeda, H.; Kanase, Y.; Makino, K.; Tabata, H.;
Oshitari, T.; Inagaki, S.; Otani, Y.; Natsugari, H.; Takahashi, H.;
Ohwada, T. Elucidation of the E-Amide Preference of N-Acyl Azoles. J.
Org. Chem. 2017, 82, 11370. (e) Kong, X.; Tang, A.; Wang, R.; Ye, E.;
Terskikh, V.; Wu, G. Are the amide bonds in N-acyl imidazoles twisted?
A combined solid-state 17O NMR, crystallographic, and computational
study. Can. J. Chem. 2015, 93, 451. (f) Takahashi, Y.; Wakamatsu, S.;
Tabata, H.; Oshitari, T.; Natsugari, H.; Takahashi, H. Isolation of
Atropisomers of N-Benzoylated Pyrroles and Imidazoles. Synthesis
2015, 47, 2125.
Energetics of Small- and Medium-Sized One-Carbon-Bridged Twisted
Amides using ab Initio Molecular Orbital Methods: Implications for
Amidic Resonance along the C−N Rotational Pathway. J. Org. Chem.
2015, 80, 7905.
(18) Otani, Y.; Nagae, O.; Naruse, Y.; Inagaki, S.; Ohno, M.;
Yamaguchi, K.; Yamamoto, G.; Uchiyama, M.; Ohwada, T. An
Evaluation of Amide Group Planarity in 7-Azabicyclo[2.2.1]heptane
Amides. Low Amide Bond Rotation Barrier in Solution. J. Am. Chem.
Soc. 2003, 125, 15191.
̌
(19) Lukes, R. Collect. Czech. Chem. Commun. 1938, 10, 148.
(20) Barrett, K. T.; Metrano, A. J.; Rablen, P. R.; Miller, S. J.
Spontaneous transfer of chirality in an atropisomerically enriched two-
axis system. Nature 2014, 509, 71.
(11) Greenberg, A.; Breneman, C. M.; Liebman, J. F. The Amide
Linkage: Structural Significance in Chemistry, Biology, and Materials
Science; Wiley, 2000.
(21) Liverton, N. J.; Butcher, J. W.; Claiborne, C. F.; Claremon, D. A.;
Libby, B. E.; Nguyen, K. T.; Pitzenberger, S. M.; Selnick, H. G.; Smith,
G. R.; Tebben, A.; Vacca, J. P.; Varga, S. L.; Agarwal, L.; Dancheck, K.;
Forsyth, A. J.; Fletcher, D. S.; Frantz, B.; Hanlon, W. A.; Harper, C. F.;
Hofsess, S. J.; Kostura, M.; Lin, J.; Luell, S.; O’Neill, E. A.; Orevillo, C. J.;
Pang, M.; Parsons, J.; Rolando, A.; Sahly, Y.; Visco, D. M.; O’Keefe, S. J.
Design and Synthesis of Potent, Selective, and Orally Bioavailable
Tetrasubstituted Imidazole Inhibitors of p38 Mitogen-Activated
Protein Kinase. J. Med. Chem. 1999, 42, 2180.
(22) (a) Yamada, S.; Sugaki, T.; Matsuzaki, K. Twisted Amides as
Selective Acylating Agents for Hydroxyl Groups under Neutral
Conditions: Models for Activated Peptides during Enzymatic Acyl
Transfer Reaction. J. Org. Chem. 1996, 61, 5932. (b) Meng, G.; Shi, S.;
Lalancette, R.; Szostak, R.; Szostak, M. Reversible Twisting of Primary
Amides via Ground State N−C(O) Destabilization: Highly Twisted
Rotationally Inverted Acyclic Amides. J. Am. Chem. Soc. 2018, 140, 727.
(c) Szostak, R.; Szostak, M. N-Acyl-glutarimides: Resonance and
Proton Affinities of Rotationally-Inverted Twisted Amides Relevant to
(12) (a) Poland, B. W.; Xu, M.-Q.; Quiocho, F. A. Structural Insights
into theProtein Splicing Mechanism of PI-SceI. J. Biol. Chem. 2000, 275,
16408. (b) Romanelli, A.; Shekhtman, A.; Cowburn, D.; Muir, T. W.
Semisynthesis of a segmental isotopically labeled protein splicing
precursor: NMR evidence for an unusual peptide bond at the N-extein−
intein junction. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 6397.
(c) Shemella, P.; Pereira, B.; Zhang, Y.; Van Roey, P.; Belfort, G.; Garde,
S.; Nayak, S. K. Mechanism for intein C-terminal cleavage: a proposal
from quantum mechanical calculations. Biophys. J. 2007, 92, 847.
(d) Lizak, C.; Gerber, S.; Numao, S.; Aebi, M.; Locher, K. P. X-ray
structure of a bacterial oligosaccharyltransferase. Nature 2011, 474, 350.
(e) Lizak, C.; Gerber, S.; Michaud, G.; Schubert, M.; Fan, Y.-Y.; Bucher,
M.; Darbre, T.; Aebi, M.; Reymond, J.-L.; Locher, K. P. Unexpected
reactivity and mechanism of carboxamide activation in bacterial N-
linked protein glycosylation. Nat. Commun. 2013, 4, 2627.
(13) (a) Brown, R. S.; Bennet, A. J.; Slebocka-Tilk, H. Recent
perspectives concerning the mechanism of H3O+- and hydroxide-
E
Org. Lett. XXXX, XXX, XXX−XXX