6770
M. E. Moon et al. / Tetrahedron Letters 51 (2010) 6769–6771
tert-BuONO(1.2 eq.)
p-TsOH(1.2 eq.)
Ar-NH2 + M X
Ar-X
Cu Halide (1 mol %)
3,4
2
1
1,3,4: a, Ar =2-NO2-C6H4 ; b,Ar = 3-NO2C6H4; c,Ar =4-NO2C6H4 ; d,Ar = 2-CNC6H4;e,Ar= 4-CNC6H4;
f,Ar = 4-IC6H4; g,Ar = 4-BrC6H4;h,Ar = 4-ClC6H4; i,Ar = 2-OCH3C6H4; j, Ar = 4-OCH3C6H4;
k, Ar = 4-NO2-2-OCH3C6H3; l,Ar = 2-NO2-4-OCH3C6H3
2: benzyltriethylammonium chloride(BTAC),sodium bromide, tertabutylammonium bromide(TBAB)
3: X = Br, 4: X = Cl
Scheme 1. Synthesis of aryl bromides and chlorides by diazotization–halogenation of aryl amines.
environmentally and economically favourable alternative over
other reported protocols that employ organic solvents, a desir-
able goal for current green synthetic chemistry methodologies.
The reaction of various anilines with sodium bromide in the
presence of a catalytic amount of Cu(II) bromide, tert-butyl nitrite,
p-TsOH and a few drops of water produced aryl bromides in mod-
erate yields (Table 1) after 15–20 min of grinding. A limitation of
the aniline substrate, that it requires a strong electron-withdraw-
ing group, was observed. To overcome this drawback, we used tet-
rabutylammonium bromide (TBAB) as the bromide source in the
absence of water; the desired products were obtained in less than
20 min in higher yields (Table 1) after grinding in a quartz mor-
tar.13 This variation works well with electron-donating as well as
electron-withdrawing substituents. The p-TsOH also plays signifi-
cant role in facilitating the reaction since no conversion was ob-
served in the absence of p-TsOH.
Similarly, aryl chlorides (Table 2) were synthesized in good
yields by treatment of anilines with benzyltriethylammonium
chloride (BTAC) in the presence of CuCl2 as a catalyst via diazonium
tosylate salts.14 The comparatively lower yield of aryl chlorides to
aryl bromides can be explained in terms of the lower nucleophilic-
ity or the difficult electron transfer of chloride anions, as compared
to bromide anions as a result of their higher redox potential.
In summary, we have presented a simple, environmentally be-
nign, cost-effective, and practical method for the synthesis of aryl
bromides and chlorides from aryl amines via arenediazonium tos-
ylate salts by a simple solvent-free process. This methodology pro-
vides an efficient alternative to existing methods for the synthesis
of aryl bromides and chlorides.
Table 1
Acknowledgement
Solvent-free bromination of various aryl amines
Entry Substrate
Yield (%) of 3 Yield (%) of 3 Mp (°C)
by method 1 by method 2
This work was financially supported by the 2010 Research Fund
of the University of Ulsan, Ulsan, Republic of Korea.
1
2
3
2-NO2C6H4(1a)
3-NO2C6H4(1b)
4-NO2C6H4(1c)
55
58
65
71
77
87
38–39.5 (40a)
51–52 (52a)
123–124
(124a)
References and notes
1. (a) Zollinger, H. In The Chemistry of Amino, Nitroso, Nitro and Related Groups;
Patai, S., Ed.; Wiley & Sons: New York, 1996; pp 636–637; (b) Moro, A. V.;
Cardoso, F. S. P.; Correia, C. R. D. Tetrahedron Lett. 2008, 49, 5668; (c) Roglans,
A.; Pla-Quintana, A.; Moreno-Manas, M. Chem. Rev. 2006, 106, 4622; (d)
Heinrich, M. R.; Blank, O.; Ullrich, D.; Kirschstein, M. J. Org. Chem. 2007, 72,
9609; (e) Kikukawa, K.; Kono, K.; Wada, F.; Matsuda, T. J. Org. Chem. 1983, 48,
1333; (f) Kikukawa, K.; Kono, K.; Wada, F.; Matsuda, T. Chem. Lett. 1982, 35; (g)
Garcia, A. L. L.; Carpes, M. J. S.; Montes de Oca, A. C. B.; dos Santos, M. A. G.;
Santana, C. C.; Correia, C. R. D. J. Org. Chem. 2005, 70, 1050.
2. (a) Jiang, H.; Zhu, S. J. Fluorine Chem. 2008, 129, 40; (b) Sabino, A. A.; Machado,
A. H. L.; Correia, C. R. D.; Eberlin, M. N. Angew. Chem., Int. Ed. 2004, 43, 4389; (c)
Masllorens, J.; Bouquillon, S.; Roglans, A.; Hénin, F.; Muzart, J. J. Organomet.
Chem. 2005, 690, 3822; (d) Artuso, E.; Barbero, M.; Degani, I.; Dughera, S.; Fochi,
R. Tetrahedron 2006, 62, 3146; (e) Kaupp, G.; Herrmann, A.; Schmeyers, J. Chem.
Eur. J. 2002, 8, 1395; (f) Sengupta, S.; Bhattacharyya, S. Tetrahedron Lett. 1995,
36, 4475.
4
5
2-CNC6H4(1d)
4-CNC6H4(1e)
42
54
68
82
52–54
(53–57a)
109–111
(110a)
6
7
8
4-IC6H4(1f)
4-BrC6H4(1g)
4-ClC6H4(1h)
30
16
10
64
60
46
87–89 (89a)
82–84 (83a)
64–66
(64–67a)
Oil (2a)
9
10
11
2-MeOC6H4(1i)
4-MeOC6H4(1j)
4-NO2-2-MeOC6H3
(1k)
2-NO2-4-
MeOC6H3(1l)
0
0
24
44
45
80
Oil (9a)
101–102
12
25
78
31–33
(32–33a)
3. Filimonov, V. D.; Trusova, M.; Postnikov, P.; Krasnokutskaya, E. A.; Lee, Y. M.;
Hwang, H. Y.; Kim, H.; Chi, K. W. Org. Lett. 2008, 10, 3961.
4. (a) Cygler, M.; Przybylska, M.; Elofson, R. M. Can. J. Chem. 1982, 60, 2852; (b)
Galli, C. Chem. Rev. 1988, 88, 765; (c) Barbero, M.; Crisma, M.; Degani, I.; Fochi,
R.; Perracino, P. Synthesis 1998, 1171.
Method 1: tert-BuONO, p-TsOH, Cu(II) bromide, NaBr, a few drops of water.
Method 2: tert-BuONO, p-TsOH, Cu(II) bromide, TBAB.
a
Reference mp (Aldrich Handbook of Fine Chemicals).
5. Gorlushko, D. A.; Filimonov, V. D.; Krasnokutskaya, E. A.; Semenishcheva, N. I.;
Go, B. S.; Hwang, H. Y.; Cha, E. H.; Chi, K. W. Tetrahedron Lett. 2008, 49, 1080.
6. Filimonov, V. D.; Semenischeva, N. I.; Krasnokutskaya, E. A.; Tretyakov, A. N.;
Hwang, H. Y.; Chi, K. W. Synthesis 2008, 2, 185.
Table 2
Solvent-free chlorination of various aryl amines
7. Gorlushko, D. A.; Filimonov, V. D.; Semenishcheva, N. I.; Krasnokutskaya, E. A.;
Tret’yakov, A. N.; Go, B. S.; Hwang, H. Y.; Cha, E. H.; Chi, K. W. Russ. J. Org. Chem.
2008, 44, 1243.
8. Lee, Y. M.; Moon, M. E.; Vajpayee, V.; Filimonov, V. D.; Chi, K. W. Tetrahedron
2010, 66, 7418.
9. (a) Han, X.; Weng, Z.; Andy Hor, T. S. J. Organomet. Chem. 2007, 692, 5690; (b)
Manolikakes, G.; Hernandez, C. M.; Schade, M. A.; Metzger, A.; Knochel, P. J. Org.
Chem. 2008, 73, 8422; (c) Ye, Z.-W.; Yi, W.-B. J. Fluorine Chem. 2008, 129, 1124;
(d) Farina, V. In Comprehensive Organometallic Chemistry II; Abel, E. W., Stone, F.
G. A., Wilkinson, G., Eds.; Pergamon Press: Oxford, 1995; Vol. 12, pp 161–240;
(e) Soderbegr, B. C. G. Coord. Chem. Rev. 2004, 248, 1085.
Entry
Substrate
Yield (%) of 4 by method 3
Mp (°C)
Oil (33a)
1
2
3
4
5
6
7
8
2-NO2C6H4(1a)
3-NO2C6H4(1b)
4-NO2C6H4(1c)
2-CNC6H4(1d)
4-CNC6H4(1e)
4-MeOC6H4(1j)
4-NO2-2-MeOC6H3(1k)
2-NO2-4-MeOC6H3(1l)
53
65
70
33
54
54
65
69
46–47 (47a)
80–81 (81a)
41–43 (43a)
90–92 (91a)
87–89 (89a)
76–80
38–41 (41a)
10. (a) Phan, N. T. S.; Styring, P. Green Chem. 2008, 10, 1055; (b) Lehmann, U.;
Awasthi, S.; Minehan, T. Org. Lett. 2003, 5, 2405; (c) Milton, E. J.; Clarke, M. L.
Method 3: tert-BuONO, p-TsOH, Cu(II) chloride, BTAC.
a
Reference mp (Aldrich Handbook of Fine Chemicals).