4598
J. Am. Chem. Soc. 1999, 121, 4598-4607
Equilibrium Formation of Anilides from Carboxylic Acids and
Anilinesin Aqueous Acidic Media
Ahmed M. Aman and R. S. Brown*
Contribution from the Department of Chemistry, Queen’s UniVersity, Kingston, Ontario, Canada K7L 3N6
ReceiVed January 11, 1999. ReVised Manuscript ReceiVed March 22, 1999
Abstract: The formations of formanilide, p-methoxyformanilide, p-nitroformanilide, and acetanilide from their
corresponding carboxylic acids and anilines in aqueous acidic media have been investigated at temperatures
between 60 and 100 °C under a variety of conditions such as pH, D2O, added phosphate, and added ethanol.
In each case, the pseudo-first-order rate constants for the establishment of equilibrium (kobs), from both the
hydrolysis and formation directions, and the conditional equilibrium constant (K′ ) [anilide]/[aniline]total) were
determined in excess formate. From K′, and knowledge of how the pKa values of RCOOH and anilinium ion
depend on the various conditions, is derived a corrected equilibrium constant, K′eq, defined as [anilide]/
([aniline][RCOOH]). In the case of formanilide, the K′ value is found to be invariant with temperature reductions,
although the K′eq value increases. In D2O media, the K′ value drops slightly, but after correcting for the medium
induced changes in [aniline] and [RCOOH], the K′eq value is the same as in water. In the presence of added
KH2PO4, the rate of establishment of equilibrium increases but the K′ and K′eq values do not change relative
to their values without phosphate. Added ethanol is found to increase both the rate of establishment of equilibrium
and the K′ equilibrium constants, but reduces K′eq. The mechanism of formation of anilides in water under
acidic conditions is discussed.
Introduction
bonds in aqueous media in the absence of enzymes is also of
interest since this is implicated in the origin of life. Attempts4-8
have been made to form peptides from amines and acids or by
coupling amino acids under conditions that resemble those of
primitive earth. In studies simulating so-called prebiotic condi-
tions in water, linear and cyclic polyphosphates,5 cyanamide,6
metal ions,7 silica, alumina and clay,8 and more recently iron
sulfide plus H2S9 have been used for promoting amide bond
formation from acids and amines.
The great bulk of studies concerning amide hydrolysis are
conducted under acidic or basic conditions where the reaction
proceeds essentially to hydrolyzed products.1 Consequently, it
is generally believed that amide bond formation in aqueous
solution is unfavorable because the experimental conditions
under which the reactions are conducted favor the hydrolysis
process (eq 1). However, from the biochemical perspective, it
Reformation of lactams from their amino acid hydrolysis
products is well-documented and, in many cases, is very
favorable due to the intramolecularity of the process.10 Studies
by Fersht and Requena,11 Morawetz and Otaki,12 Guthrie,13 and
has long been known that hydrolytic enzymes are also capable
of reforming peptides in solution.2,3 The formation of amide
(4) (a) Oie, T.; Loew, G. H.; Burt, S. K.; Binkley, J. S.; MacElroy, R.
D. J. Am. Chem. Soc. 1982, 104, 6169. (b) Oie, T.; Loew, G. H.; Burt, S.
K.; Binkley, J. S.; MacElroy, R. D. J. Am. Chem. Soc. 1983, 105, 2221.
(5) (a) Chung, N. M.; Lohrmann, R.; Orel, E.; Rabinowiz, J. Tetrahedron
1971, 27, 1210. (b) Yamanaka, J.; Inomata, K.; Yamagata, Y. Origins Life
1988, 18, 165. (c) Rabinowitz, J.; Flores, J.; Krebsbach, R.; Rogers, G.
Nature 1969, 224, 795. (d) Rabinowitz, J.; Hampai, A. J. Mol. EVol. 1985,
21, 199.
(6) (a) Steinman, G. D.; Kenyon, D. H.; Calvin, M. Biochem. Biophys
Acta 1966, 124, 339. (b) Ponnamperuma, C.; Peterson, E. Science 1965,
147, 1572. (c) Steinman, G.; Kenyon, D. H.; Calvin, M. Nature 1965, 206,
707.
(1) For reviews on this subject, see: (a) Bennett, A. J.; Brown, R. S.
Physical Organic Chemistry of Acyl Transfer Reactions. In ComprehensiVe
Biological Catalysis; Sinnott, M. L., Ed.; Academic Press Inc: London,
1997; Vol. 1, pp 293-326. (b) Brown, R. S. Studies of Amide Hydrolysis:
The Acid, Base, and Water Reactions. In Biochemical Significance of the
Amide Linkage; Greenberg, A., Breneman, C., Liebman, J., Eds.; Wiley-
Interscience: New York, 1999; Chapter 2, in press. (c) Jencks, W. P.
Catalysis in Chemistry and Enzymology; McGraw-Hill: New York, 1969;
pp 7-242, 463-554.
(2) (a) Fruton, J. S. In AdVances in Enzymology; Meister, A., Ed.; J.
Wiley and Sons: New York, 1982; pp 239-306. (b) Dobry, A.; Fruton, J.
S.; Sturtevant, J. M. J. Biol. Chem. 1952, 195, 149. Kullmenn, W. J. Biol.
Chem. 1980, 255, 8234. (c) Carpenter, F. H. J. Am. Chem. Soc. 1960, 82,
1111. (d) Inovyl, K.; Watanabe. K.; Morihara, K.; Tochino, Y.; Kanaya, T.
Emura, J.; Sekakibaras, S. J. Am. Chem. Soc. 1979, 101, 751. (e) Esowa,
Y.; Ohmori, M.; Lchikawa, T.; Kurite, H.; Sato, M.; Mori, K. Bull. Chem.
Soc. Jpn. 1977, 50, 2762. (f) Westeneys, H.; Borsook, H. Physiol. Re.V.
1930, 10, 110. (g) Morihara, K.; Oka, T.; Tsuzuki, H. Arch. Biochem.
Biophys. 1969, 132, 489. (h) Gawron, O.; Glaid, A. J.; Boyle, R. E.;
Odstrchel, G. Arch. Biochem. Biophys. 1961, 95, 203.
(7) Rishpon, J.; O’Hara, P.; Lahav, N.; Lawless, J. G. J. Mol. EVol. 1982,
18, 179.
(8) (a) Bujdak, J.; Rode, B. M. J. Mol. EVol. 1997, 45, 457. (b)
Schwendinger, G. M.; Rode, B. M. J. Mol. EVol. 1992, 22, 349.
(9) Keller, M.; Blochl, E.; Wachtershauser, G.; Stetter, K. O. Nature
1994, 368, 836.
(10) (a) Kirby, A. J.; Mujahid, T. G.; Camilleri, P. J. Chem. Soc., Perkin
Trans. 2 1979, 1610. (b) Camilleri, P.; Ellul, R.; Kirby, A.; Mujahid, T. G.
J. Chem. Soc., Perkin Trans. 2 1979, 1617. (c) Fife, T. H.; Duddy, N. W.
J. Am. Chem. Soc. 1983, 105, 74 and reference therein.
(11) Fersht, A. R.; Requena, Y. J. Am. Chem. Soc. 1971, 93, 3499.
(12) Morawetz, H.; Otaki, P. S. J. Am. Chem. Soc. 1963, 85, 436.
(13) (a) Guthrie, J. P. J. Am. Chem. Soc. 1974, 96, 3608. (b) Guthrie, J.
P.; Pike, D. C.; Lee, Y. Can. J. Chem. 1992, 70, 1671.
(3) (a) Homandberg, G. A.; Laskowski, M. Biochemistry 1979, 18, 586.
(b) Homandberg, G. A.; Mattis, J. A.; Laskowski, M. Biochemistry 1978,
17, 5220.
10.1021/ja990104d CCC: $18.00 © 1999 American Chemical Society
Published on Web 05/01/1999