Page 5 of 5
Organic & Biomolecular Chemistry
DOI: 10.1039/C5OB01070E
Hz, 2H), 4.39 (s, br, 2H); 13C NMR (100 MHz, CDCl3): δ 152.4,
126.3, 122.0, 113.4.
3-Aminoacetophenone (2n): brownish solid (78%, 210.6 mg);
1H NMR (400 MHz, CDCl3): δ 7.24-7.26 (m, 1H), 7.14-7.19 (m,
2H), 6.78-6.81 (m, 1H), 3.66 (s, br, 2H), 2.49 (s, 3H); 13C NMR
(100 MHz, CDCl3): δ 198.9, 146.8, 138.1, 129.5, 119.9, 119.0,
113.8, 26.8.
1 (a) B. Schlummer and U. Scholz, Adv. Synth. Catal. 2004, 346, 1599;
(b) D. S. Surry and S. L. Buchwald, Angew. Chem. Int. Ed. 2008, 47,
65 6338; (c) S. A. Lawrence, Ed. Amines: Synthesis, Properties, and
Applications; Cambridge University Press: Cambridge, 2004; (d) Z.
Rappoport, Ed. The Chemistry of Anilines, Parts 1 and 2; John Wiley &
Sons: New York, 2007; (e) S. Tasler and B. H. Lipshutz,. J. Org. Chem.
2003, 68, 1190; (f) A. Ricci, Ed. Amino Group Chemistry: From
70 Synthesis to Life Sciences; wiley-VCH: Weinheim, 2008.
5
3-Trifluoromethylaniline (2o): light yellow liquid (66%, 212.5
1
mg); H NMR (400 MHz, CDCl3): 7.15 (t, J = 7.8 Hz, 1H), 6.90
2 (a) F. Yuko, F. Natsumi, T. Kohei, H. Yusaku, N. Takashi, K. Kaoru, K.
Shinichirou, I. Shinichi and T. Koichi, Analytical Chemistry,
2014, 86, 1937; (b) D. Crosby and J. McLaughlin, Lloydia, 1973, 36, 416;
(c) J. Seifert, H. Mostecka and G.F. Kolar, Toxicology, 1993, 83, 49; (d)
75 P. Demare and I. J. Regla, Chem. Educ. 2012, 89, 147.
10 (d, J = 7.8 Hz, 1H), 6.79 (m, 1H), 6.70-6.73 (m, 1H), 3.66 (s, br,
2H); 13C NMR (100 MHz, CDCl3): δ 146.7, 131.7, 131.5, 131.1,
129,8, 128.3, 125.6, 122.9, 118.0, 115.1, 115.0, 111.4, 111.3.
3 (a) J. P. Wolfe, S. Wagaw, J. F. Marcoux and S. L. Buchwald Acc.
Chem. Res. 1998, 31, 805; (b) J. F. Hartwig. Acc. Chem. Res. 2008, 41,
1534; (c) J. F. Hartwig, In Handbook of Organopalldium Chemistry for
Organic Synthesis; Wiely-interscience: New York, 2002; (d) S. L.
80 Buchwald and D. S. Surry, Chem. Sci. 2011, 2, 27; (e) J. X. Qiao and P.
Y. S. Lam, In Boronic Acids - Preparation and Applications in Organic
synthesis and Medicine, 2nd ed.; (f) J. X. Qiao and P. Y. S. Lam,
1
1-Aminonapthaline (2p): grey solid (82%, 234.5 mg); H NMR
(400 MHz, CDCl3): 7.81-7.84 (m, 2H), 7.46-7.48 (m, 2H), 7.29-
15 7.35 (m, 2H), 6.80 (d, J = 6.8 Hz, 1H); 13C NMR (100 MHz,
CDCl3): δ 142.1, 134.4, 128.6, 126.4, 125.9, 124.9, 123.7, 120.8,
119.0, 109.7.
1
2-Aminopyridine (2q): light yellow solid (83%, 234.1 mg); H
Synthesis, 2011, 829; (g) T. D. Quach and R. A. Batey, Org. Lett. 2003,
4397; (h) S. S. Bhojgude, T. Kaicharla and A. T. Biju, Org. Lett. 2013,
85 15, 5452. (i) D. E. Olson, Mini-Rev. Org. Chem. 2011, , 341.
4 (a) T. Mallat, A. Baiker, W. Kleist and K. Koehler, Handb. Heterog.
Catal. 2nd ed. 2008,
, 3548; (b) H. U. Blaser, H. Steiner and M. Studer,
5,
NMR (400 MHz, CDCl3): 8.03-8.05 (m, 1H), 7.37-7.46 (m, 1H),
20 6.59-6.62 (m, 1H), 6.46 (d, J = 8.2 Hz, 1H), 4.52 (s, br, 2H); 13C
NMR (100 MHz, CDCl3): δ 158.2, 148.1, 137.8, 114.0, 108.2.
8
1
4-Aminopyridine (2r): white solid (78%, 219.9 mg); H NMR
7
(400 MHz, CDCl3): δ 8.20 (dd, J = 6.4 Hz, 1.4 Hz, 2H), 6.51 (dd,
J = 6.4 Hz, 1.4 Hz, 2H), 4.14 (s, br, 2H); 13C NMR (100 MHz,
25 CDCl3): δ 152.7, 150.4, 109.7.
ChemcatChem, 2009, 1, 210.
5 (a) H. Rao, H. Fu, Y. Jiang and Y. Zhao, Angew. Chem. Int. Ed. 2009,
90 48, 1114; (b) J. L. Klinkenberg and J. F. Hartwig, Angew. Chem. Int. Ed.
2011, 50, 86; (c) , H. Rao and H. Fu, Synlett, 2011, 745; (d) C. W.
Cheung, D. S. Surry and S. L. Buchwald, Org. Lett. 2015, 15, 3734.
6 C. Zhu, G. Li, D. H. Ess, J. R. Falck and L. Kurti, J. Am. Chem. Soc.
2012, 134, 18253.
1
3-Aminoquinoline (2s): brownish solid (74%, 319.7mg);. H
NMR (400 MHz, CDCl3): δ 8.49 (s, 1H), 7.94-7.96 (m, 1H),
7.55-7.58 (m, 1H), 7.39-7.44 (m, 2H), 7.21 (m, 1H), 3.65 (s, br,
2H); 13C NMR (100 MHz, CDCl3): δ 143.1, 142.6, 139.9, 129.2,
30 128.9, 127.0, 125.9, 125.7, 115.1.
95 7 S, C. Mlynarski, A. S. Karns and J. P. Morken, J. Am. Chem. Soc. 2012,
134, 16449.
1
Hexylamine (4a): light yellow liquid (65%, 196.9 mg); H NMR
8 S. Voth, J. W. Hollet and J. A. McCubbin, J. Org. Chem. 2015, 80
2545.
9 (a) J. K. Sanford, F. T. Blair, J. Arroya and K. W. Sherk, J. Am. Chem.
100 Soc., 1945, 67, 1941; (b) A. Citterio, A. Gentile, F. Minisci,
M. Serravalle and S. J. Ventura, Org. Chem. 1984, 49, 3364; D. G. Hall,
Ed.; Wiley-VCH: Weinheim, 2011.
,
(400 MHz, CDCl3): δ 2.64 (t, J = 7.3 Hz, 2H), 1.36-1.41 (m, 2H),
1.21-1.31 (m, 6H), 1.16 (s, br, 2H), 0.85 (t, J = 6.9 Hz, 3H); 13C
NMR (100 MHz, CDCl3): δ 42.3, 39.9, 31.6, 26.4, 22.7, 14.0.
35 Benzylamine (4b): light yellow liquid (76%, 244.0 mg); 1H
NMR (400 MHz, CDCl3): δ 7.14-7.27 (m, 5H), 3.77 (s, 2H), 1.43
(s, 2H); 13C NMR (100 MHz, CDCl3): δ 143.2, 128.5, 127.1,
126.8, 46.5.
10 N. Chatterjee, D. Bhatt and A. Goswami, Org. Biomol. Chem. 2015,
13, 4828.
105 11 For other organo-hypervalent iodine promoted functionalization of
organic compounds: (a) N. Chatterjee, H. Chowdhury, K. Sneh and A.
Goswami, Tetrahedron Lett. 2015, 56, 172; (b) N. Chatterjee and A.
Goswami, Tetrahedron Lett. 2015, 56, 1524; for other functionalization of
organic compounds mediated by organic hypervalentiodine reagent see:
2-Phenylethylamine (4c): light brown liquid (78%, 283.1 mg);.
40 1H NMR (400 MHz, CDCl3): δ 7.28-7.32 (m, 2H), 7.19-7.23 (m,
3H), 2.96 (t, J = 6.9 Hz, 2H), 2.74 (t, J = 6.9 Hz, 2H), 1.24 (s, br,
2H); 13C NMR (100 MHz, CDCl3): δ 139.8, 128.9, 128.4, 126.0,
43.8, 40.0.
110 (a) V. V. Zhdankin
Structure and Synthetic Applications of Polyvalent Iodine Compounds
,
Hypervalent Iodine Chemistry: Preparation,
,
1
Cyclohexylamine (4d): colourless liquid (70%, 207.9 mg); H
John Wiley & Sons Ltd, 2014; (b) J. P. Brand and J. Waser, Chem Soc
Rev. 2012, 41, 4165; (c) M. Arisawa, S. Utsumi, M. Nakajima, N. G.
Ramesh, H. Tohma and Y. Kita, Chem. Commun. 1999, 469; (d) T. Dohi,
45 NMR (400 MHz, CDCl3): δ 2.53-2.60 (m, 1H), 1.74-1.78 (m,
2H), 1.63-1.68 (m, 2H), 1.52-1.57 (m, 1H), 1.34 (s, br, 2H), 0.94-
1.26 (m,6H); 13C NMR (100 MHz, CDCl3): δ 50.5, 36.9, 25.7,
25.2.
115 K. Morimoto, Y. Kiyono, H. Tohma and Y. Kita, Org. Lett. 2004,
(e) V. V. Zhdankin and P. Stang, Chem. Rev. 2008, 108, 5299; (f) D. Q.
Dong, S.H. Hao, Z. L. Wang and C. Chen, Org. Biomol. Chem. 2014, 12
7, 537;
,
4278; (g) K. Kiyokawa, S. Yahata, T. Kojima and Minakata, S. Org. Lett.
2014, 16, 4646; (h) E. A. Merritt and B. Olofsson, Angew. Chem. Int. Ed.
120 2009, 48, 9052; for functional group transformation in the absesence of
organohypervalent iodine, see: i) A. K. Chakraborti and Shivani, J. Org.
50
Acknowledgements
Chem. 2006, 71, 5785; (j) S. Bhagat and A. K. Chakraborti, J. Org. Chem
.
We are grateful to DST, New Delhi, India for their generous
financial support and IIT Ropar for infrastructural facilities. NC
would like to thank IIT Ropar for his fellowship.
2007, 72, 1263; (k) A. K. Chakraborti, A. Basak and V. Grover, J. Org.
Chem. 1999, 64, 8014; (l) S. V. Chankeshwara, R. Chebolu and A. K.
125 Chakraborti, J. Org. Chem. 2008, 73, 8615; (m) G.Yan and M. Yang,
Org. Biomol. Chem. 2013, 11, 2554.
55 Notes and references
12 see ESI
13 N. A.; Petasis and I. A. Zavialov, Tetrahedron Lett. 1996, 37, 567.
14 J. G. Krause, S. Kwon and B. J. Geor, Org. Chem. 1972, 37, 2040.
130
Department of Chemistry, Indian Institute of Technology, Ropar (IIT
Ropar), Nangal Road, Rupnagar, Punjab 140001, India
Tel: +91-1881-242121; E-mail: agoswami@iitrpr.ac.in
60 †Electronic Supplementary Information (ESI) available: See
DOI: 10.1039/b000000x
135
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 5