Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C6CC01505K
COMMUNICATION
Journal Name
5
(a) A. A. N. Magro, G. R. Eastham and D. J. Cole-Hamilton, Chem.
Commun., 2007, 3154–3156; (b) D. L. Dodds, J. Coetzee, J.
Klankermayer, S. Brosinski, W. Leitner and D. J. Cole-Hamilton,
Chem. Commun., 2012, 48, 12249−12262; (c) J. Coetzee, D.
L.Dodds, J. Klankermayer, S. Brosinski, W. Leitner, A. M. Z.
Slawin and D. J. Cole- Hamilton, Chem.-Eur. J., 2013, 19,
11039−11050; (d) T. vom Stein, M. Meuresch, D. Limper, M.
Schmitz, M. Hölscher, J. Coetzee, D. J. Cole-Hamilton, J.
Klankermayer and W. Leitner, J. Am. Chem. Soc., 2014, 136,
13217−13225.
E. Balaraman, B. Gnanaprakasam, L. J.W. Shimon and D.
Milstein, J. Am. Chem. Soc., 2010, 132, 16756 – 16758.
M. Ito, T. Ootsuka, R. Watari, A. Shiibashi, A. Himizu and T.
Ikariya, J. Am. Chem. Soc., 2011, 133, 4240 – 4242.
T. Miura, I. E. Held, S. Oishi, M. Naruto and S. Saito, Tetrahedron
Lett., 2013, 54, 2674-2678.
amide is obviously facilitated by the electron-deficient character of
the carbonyl carbon atom in the trifluoroacetamides.
In conclusion, we have demonstrated for the first time catalytic
hydrogenation of a family of activated amides to alcohols and
amines by applying pincer complexes based on an earth-abundant,
low toxicity, first row transition metal. Thus, the iron pincer
complexes [(iPr-PNP)Fe(H)(BH4)(CO)] (2) [(iPr-PNP)Fe(H)(Br(CO)] (3)
are effective pre-catalysts for the selective hydrogenation of a wide
range of N-substituted 2,2,2,-trifluoroacetamides and N-(4-
fluorophenyl)-4-(trifluoromethyl)benzamide to trifluoroalcohol and
6
7
8
9
the corresponding amines.
A plausible mechanism has been
proposed. Further investigation regarding the extension of the
scope of the reaction, and elucidation of a detailed mechanism is
currently underway in our group.
(a) J. M. John and S. H. Bergens, Angew. Chem. 2011, 123,
10561 – 10564; Angew. Chem. Int. Ed. 2011, 50, 10377 – 10380;
(b) J. M. John, R. Loorthuraja, E. Antoniukb and S. H. Bergens,
Catal. Sci. Technol., 2015, 5, 1181.
This research was supported by the MINERVA Foundation, by the
Israel Science Foundation, and by the Peter Cohn Catalysis Research
Fund. D.M. holds the Israel Matz Professorial Chair of Organic
Chemistry. J. A. G. and S. C. thank the Swiss Friends of the
Weizmann Institute of Science for generous postdoctoral
fellowships.
10 Y. Kita, T. Higuchi and K. Mashima, Chem. Commun., 2014, 50,
11211-11213.
11 J. R. Cabrero-Antonino, E. Alberico, H. J. Drexler, W. Baumann,
K. Junge, H. Junge and M. Beller, ACS Catal., 2016, 6, 47−54.
12 Recent reviews: (a) I. Bauer and H-J. Knolker, Chem. Rev., 2015,
115, 3170; (b) R. H. Morris, Acc. Chem. Res., 2015, 48, 1494; (c)
P. J. Chirik, Acc. Chem. Res., 2015, 48, 1687; (d) T. Zell and D.
Milstein, Acc. Chem. Res., 2015, 48, 1979; (e) S. Chakraborty, P.
Bhattacharya, H. Dai and H. Guan, Acc. Chem. Res., 2015, 48,
1995; (f) W. McNeil and T. Ritter, Acc. Chem. Res., 2015, 48,
2330; (g) D. Benito-Garagorri and K. Kirchner, Acc. Chem. Res.,
2008, 41, 201.
References
1
(a) K. Ishihara, S. Ohara and H. Yamamoto, J. Org. Chem., 1996,
61, 4196-4197; (b) A. K. Ghose, V. N. Viswanadhan and J. J.
Wendoloski, J. Comb. Chem., 1999, 1, 55–68; (c) G. W. Bemis
and M. A. J. Murcko, Med. Chem., 1999, 42, 5095–5099; (d) J. S.
Carey, D. Laffan, C. Thomson and M. T. Williams, Org. Biomol.
Chem., 2006, 4, 2337–2347; (e) L. J. Goossen and B. Melzer, J.
Org. Chem., 2007, 72, 7473–7476; (f) R. M. Burk and D. F.
Woodward, Drug Dev. Res., 2007, 68, 147–155.
13 For Fe catalysis see: (a) R. J. Trovitch, E. Lobkovsky, M. W.
Bouwkamp and P. J. Chirik, Organometallics, 2008, 27, 6264; (b)
R. P. Yu, J. M. Darmon, J. M. Hoyt, G. W. Margulieux, Z. R.
Turner and P. J. Chirik, ACS Catal., 2012, 2, 1760; (c) D. Srimani,
Y. Diskin-Posner, Y. Ben-David and D. Milstein, Angew. Chem.
Int. Ed., 2013, 52, 14131; (d) R. Langer, G. Leitus, Y. Ben-David
and D. Milstein, Angew. Chem. Int. Ed., 2011, 50, 2168; (e) R.
Langer, Y. Diskin-Posner, G. Leitus, L. J. W. Shimon, Y. Ben-David
and D. Milstein, Angew. Chem. Int. Ed., 2011, 50, 9948; (f) T.
Zell, Y. Ben-David and D. Milstein, Angew. Chem. Int. Ed., 2014,
53, 4685; (g) P. O. Lagaditis, P. E. Sues, J. F. Sonnenberg, K. Y.
Wan, A. J. Lough and R. H. Morris, J. Am. Chem. Soc., 2014, 136,
1367; (h) W. Zuo, A. J. Lough, Y. F. Li and R. H. Morris, Science,
2013, 342, 1080; (i) S. Fleischer, S. Zhou, K. Junge, M. Beller,
Angew. Chem. Int. Ed., 2013, 52, 5120; (j) S. Chakraborty, H. Dai,
P. Bhattacharya, N. T. Fairweather, M. S. Gibson, J. A. Krause
and H. Guan, J. Am. Chem. Soc., 2014, 136, 7869; (k) S.
Fleischer, S. Zhou, K. Junge and M. Beller, Angew. Chem., Int.
Ed., 2013, 52, 5120; (l) C. Bornschein, S. Werkmeister, B. Wendt,
H. Jiao, E. Alberico, W. Baumann, H. Junge, K. Junge and M.
Beller, Nat. Commun., 2014, 5, 4111; (m) S. Chakraborty, G.
Leitus and D. Milstein, Chem. Commun., 2016, 52, 1812.
14 R. Langer, M. A. Iron, L. Konstantinovski, Y. Diskin-Posner, G.
Leitus, Y. Ben-David and D. Milstein, Chem. Eur. J., 2012, 18,
7196-7209.
2
3
(a) D. Dodds and D. J. Cole-Hamilton, In Sustainable Catalysis:
Challenges and Practices for the Pharmaceutical and Fine
Chemical Industries; P. J. Dunn, K. K. Hii, M. J. Krische and M. T.
Williams, Eds.; John Wiley and Sons, Inc.: Hoboken, NJ, 2013; pp
1−36; (b) M. Smith and R. Whyman, Chem. Rev., 2014, 114,
5477−5510.
(a) J. Seyden-Penne, Reductions by Alumino- and Borohydrides
in Organic Synthesis, 2nd ed., Wiley, New York, 1997; (b) J.
March, Advanced Organic Chemistry, Wiley, New York, 4th
edn,1992, p. 1212; (c) H. C. Brown, S. Narasimhan and Y. M.
Choi, Synthesis, 1981, 441; (d) H. C. Brown and P. Hein, J. Org.
Chem., 1973, 38, 912; (e) S. Werkmeister, K. Junge and M. Beller,
Org. Process Res. Dev., 2014, 18, 289.
4
Heterogeneous amide hydrogenation: (a) J. H. Paden and H.
Adkins, J. Am. Chem. Soc., 1936, 58, 2487; (b) J. C. Sauer and H.
Adkins, J. Am. Chem. Soc., 1938, 60, 402; (c) J. D. D’lanni and H.
Adkins, J. Am. Chem. Soc., 1939, 61, 1675; (d) H. S. Broadbent
and W. J. Bartley, J. Org. Chem., 1963, 28, 2345 –2347; (e) A.
Guyer, A. Bieler and G. Gerliczy, Helv. Chim. Acta, 1955, 38,
1649 – 1654; (f) I. A. Dobson (BP Chemicals Limited), EP-
0286280, 1988; (g) C. Hirosawa, N. Wakasa and T. Fuchikami,
Tetrahedron Lett., 1996, 37, 6749 – 6752; (h) G. Beamson, A. J.
Papworth, C. Philipps, A. M. Smith and R. Whyman, J. Catal.
2010, 269, 93–102; (i) G. Beamson, A. J. Papworth, C. Philipps,
A. M. Smith and R. Whyman, Adv. Synth. Catal., 2010, 352, 869
– 883; (j) G. Beamson, A. J. Papworth, C. Philipps, A. M. Smith
and R. Whyman, J. Catal. 2011, 278, 228 – 238; (k) A. A. Smith,
P. Dani, P. D. Higginson, A. J. Pettman (Avantium International
B.V.), WO-2005066112, 2005; (l) M. Stein, B. Breit, Angew.
Chem. Int. Ed., 2013, 52, 2231-2234; (m) R. Burch, C. Paun, X.-
M. Cao, P. Crawford, P. Goodrich, C. Hardacre, P. Hu, L.
McLaughlin, J. Sa and J. M. Thompson, J. Catal., 2011, 283, 89-
97; (n) J. Coetzee, H. G. Manyar, C. Hardacre and D. J. Cole-
Hamilton, ChemCatChem, 2013, 5, 2843-2847.
15 A. Mukherjee, D. Srimani, S. Chakraborty, Y. Ben-David and D.
Milstein, J. Am. Chem. Soc., 2015, 137, 8888.
16 (a) C. Gunanathan and D. Milstein, Acc. Chem. Res., 2011, 44,
588 –602; (b) D. Milstein, Trans. Philosoph. Roy. Soc A, 2015,
373, 20140189; (c) J. R. Khusnutdinova and D. Milstein,
Angew. Chem.Int. Ed., 2015, 54, 12236.
17 T. Zell, Y. Ben-David and David Milstein, Catal. Sci. Technol.,
2015, 5, 822−826.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins