Ligand-Free Iron/Copper Cocatalyzed Amination of Aryl Iodides
ammonia was significantly lower (61%; Table 2, Entry 7).
In contrast, aryl iodides substituted by electron-donating
substituents such as NH2, Me, or OMe afforded the desired
aniline derivatives in good yields (72–92%; Table 2, En-
tries 2–4). Interestingly, when the reaction was performed
with o-methoxyiodobenzene, corresponding o-methoxyani-
line (2e) was obtained in 90% isolated yield, which shows
that ortho substituents did not hamper the reaction
(Table 2, Entry 5). Extending the procedure to heterocyclic
aromatic iodide such as 3-iodopyridine was also possible,
as 94% of 3-aminopyridine (2h) was isolated under our
standard conditions (Table 2, Entry 8). Finally, para- and
meta-substituted bromoaryl iodides led selectively to the
corresponding para- and meta-bromoanilines in good yield
(82 and 89%, respectively), without detection of diami-
nobenzene derivatives (Table 2, Entries 9 and 10). Further-
more, when using aryl bromide derivatives under these con-
ditions, no reaction occurred.
[1]
[2]
For a list of methods, see: a) R. C. Larock in Comprehensive
Organic Transformations: A Guide to Functional Group Prepa-
ration, VCH, New York, 1989; b) K. Weissermel, H. J. Arpe,
Industrial Organic Chemistry, Wiley-VCH, Weinheim, 1997; c)
S. A. Lawrence, Amines: Synthesis Properties and Applications,
Cambridge University Press, Cambridge, 2004.
a) C.-Z. Tao, J. Li, Y. Fu, L. Liu, Q.-X. Guo, Tetrahedron Lett.
2008, 49, 70; b) X. Gao, H. Fu, R. Qiao, Y. Jiang, Y. Zhao, J.
Org. Chem. 2008, 73, 6864; c) A. A. Trabanco, J. A. Vega,
M. A. Fernandez, J. Org. Chem. 2007, 72, 8146; d) X. Liu, M.
Barry, H.-R. Tsou, Tetrahedron Lett. 2007, 48, 8409; e) D. Y.
Lee, J. F. Hartwig, Org. Lett. 2005, 7, 1169; f) D.-Y. Lee, J. F.
Hartwig, Org. Lett. 2005, 7, 1169; g) X. H. Huang, K. W. An-
derson, D. Zim, L. Jiang, A. Klapars, S. L. Buchwald, J. Am.
Chem. Soc. 2003, 125, 6653; h) J. Barluenga, F. Aznar, C.
Valdes, Angew. Chem. Int. Ed. 2004, 43, 343; i) C. L. Cioffi,
M. L. Berlin, J. Herr, Synlett 2004, 841; j) G. A. Grasa, M. S.
Viciu, J. K. Huang, S. P. Nolan, J. Org. Chem. 2001, 66, 7729;
k) S. Lee, M. Jorgensen, J. F. Hartwig, Org. Lett. 2001, 3, 2729;
l) G. A. Grasa, M. S. Viciu, J. Huang, S. P. Nolan, J. Org.
Chem. 2001, 66, 7729; m) X. H. Huang, S. L. Buchwald, Org.
Lett. 2001, 3, 3417; n) S. Jaime-Figueroa, Y. Liu, J. M. Mu-
chowski, D. G. Putman, Tetrahedron Lett. 1998, 39, 1313; o)
J. P. Wolfe, J. Ahman, J. P. Sadighi, R. A. Singer, S. L. Buch-
wald, Tetrahedron Lett. 1997, 38, 6367.
Conclusions
[3]
For representative papers on palladium-catalyzed C–N cross-
coupling reactions, see: a) D. S. Surry, S. L. Buchwald, Angew.
Chem. Int. Ed. 2008, 47, 6338; b) Q. L. Shen, J. F. Hartwig, J.
Am. Chem. Soc. 2007, 129, 7734; c) K. W. Anderson, R. E.
Tundel, T. Ikawa, R. A. Altman, S. L. Buchwald, Angew.
Chem. Int. Ed. 2006, 45, 6523; d) S. L. Buchwald, C. Mauger,
G. Mignani, U. Scholz, Adv. Synth. Catal. 2006, 348, 23; e) J.
Barluenga, F. Aznar, C. Vales, Angew. Chem. Int. Ed. 2004, 43,
343; f) J. F. Hartwig, Angew. Chem. Int. Ed. 1998, 37, 2046; g)
S. Wagaw, S. L. Buchwald, J. Org. Chem. 1996, 61, 7240.
In summary, we have developed a general, economical,
efficient, and environmentally friendly way to transform
aryl iodides into aniline derivatives by using an iron/copper
cocatalyst system in the presence of NaOH and aqueous
ammonia in ethanol at 90 °C. The easy use of aqueous am-
monia, the use of nontoxic ethanol as solvent, and the low
cost and environmentally benign character of the cocata-
lytic system (Fe2O3/CuI) are great advantages in terms of
green chemistry. It must be pointed out that this reaction
proceeds in air in ethanol as solvent (whereas the usual sol-
vent for such reactions is DMF, DMSO, NMP, or ethylene
glycol). Studies are currently in progress to elucidate the
mechanism of this reaction.
[4]
For selected examples on copper-catalyzed Ullmann-type ami-
nations, see: a) L. Jiang, X. Lu, H. Zhang, Y. Jiang, D. Ma, J.
Org. Chem. 2009, 74, 4542; b) J. Mao, J. Guo, H. Song, S. Ji,
Tetrahedron 2008, 64, 2471; c) H. Maheswaran, G. G. Krishna,
K. L. Prasanth, V. Srinivas, G. K. Chaitanya, K. Bhanuprak-
ash, Tetrahedron 2008, 64, 2471; d) M. L. Kantam, J. Yadav, S.
Laha, B. Sreedhar, S. Jha, Adv. Synth. Catal. 2007, 349, 1938;
e) H. Ma, X. Jiang, J. Org. Chem. 2007, 72, 8943; f) W. Chen,
Y. Zhang, L. Zhu, J. Lan, R. Xie, J. You, J. Am. Chem. Soc.
2007, 129, 13879; g) B. Zou, Q. Yuan, D. Ma, Angew. Chem.
Int. Ed. 2007, 46, 2598; h) B. Zou, Q. Yuan, D. Ma, Org. Lett.
2007, 9, 4291; i) R. Martin, C. H. Larsen, A. Cuenca, S. L.
Buchwald, Org. Lett. 2007, 9, 3379; j) D. S. Jiang, H. Fu, Y. Y.
Jiang, Y. F. Zhao, J. Org. Chem. 2007, 72, 672; k) H. Rao, Y.
Jin, H. Fu, Y. Jiang, Y. Zhao, Chem. Eur. J. 2006, 12, 3636; l)
A. Shafir, S. L. Buchwald, J. Am. Chem. Soc. 2006, 128, 8742;
m) M. Taillefer, A. Ouali, B. Renard, J. F. Spindler, Chem. Eur.
J. 2006, 12, 5301; n) H. Zhang, Q. Cai, D. Ma, J. Org. Chem.
2005, 70, 5164; o) H. J. Cristau, P. P. Cellier, J. F. Spindler, M.
Taillefer, Chem. Eur. J. 2004, 10, 5607; p) T. D. Quach, R. A.
Batey, Org. Lett. 2003, 5, 4397; q) F. Y. Kwong, S. L. Buchwald,
Org. Lett. 2003, 5, 793; r) D. Ma, Q. Cai, H. Zhang, Org. Lett.
2003, 5, 2453; s) F. Y. Kwong, A. Klapars, S. L. Buchwald, Org.
Lett. 2002, 4, 581; t) J. C. Antilla, A. Klapars, S. L. Buchwald,
J. Am. Chem. Soc. 2002, 124, 11684; u) A. Klapars, J. C.
Antilla, X. Huang, S. L. Buchwald, J. Am. Chem. Soc. 2001,
123, 7727; v) R. K. Gujadhur, C. G. Bates, D. Venkataraman,
Org. Lett. 2001, 3, 4315; w) D. Ma, C. Xia, Org. Lett. 2001, 3,
2583; x) D. Ma, Y. Zhang, J. Yao, S. Wu, F. Tao, J. Am. Chem.
Soc. 1998, 120, 12459.
Experimental Section
Representative Procedure: Commercially available red iron oxide
Fe2O3 (16 mg, 10 mol-%) and CuI (19.1 mg, 10 mol-%) were added
to a solution of iodobenzene (204 mg, 1 mmol) in ethanol (2 mL).
Aqueous ammonia (5 mmol, 25% in water) and NaOH (2 mmol,
80 mg) were successively added to the reaction mixture. The reac-
tion tube was sealed and then heated at 90 °C for 16 h. The reaction
progress was monitored by GC. The reaction mixture was cooled
to room temperature, extracted with diethyl ether (3ϫ10 mL) and
concentrated in vacuo. The residue was purified by flash column
chromatography on silica gel to provide the corresponding pure
primary arylamine compound.
Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures and compound characterization, in-
cluding NMR spectra.
Acknowledgments
[5]
a) Z. Guo, J. Guo, Y. Song, L. Wang, G. Zou, Appl. Organomet.
Chem. 2009, 23, 150; b) N. Xia, M. Taillefer, Angew. Chem. Int.
Ed. 2009, 48, 337; c) H. Wu, C. Wolf, Chem. Commun. 2009,
3035; d) J. Kim, S. Chang, Chem. Commun. 2008, 3052; e) S.
This research was financially supported by the Centre National de
la Recherche Scientifique (CNRS) and the French Ministry of Re-
search (Enseignement Supérieur et de la Recherche).
Eur. J. Org. Chem. 2009, 4753–4756
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
4755