AgaSK, a Bifunctional Galactosidase/Sucrose Kinase
REFERENCES
tem allows incorporation of sucrose under unmodified form
into the cell, where it is hydrolyzed by sucrose phosphorylase
(54, 55). Glucose-1-phosphate is subsequently transformed by a
phosphoglucomutase into glucose-6-phosphate. In both mech-
anisms, fructose is afterward phosphorylated by a fructokinase.
Certain bacteria possess ABC transporters for the direct
uptake of raffinose, which is subsequently cleaved by an ␣-ga-
lactosidase into galactose and sucrose, and the sucrose pro-
duced thereby is taken in charge by sucrose phosphorylase (54,
55). Genes coding for a putative ABC transporter for raffinose
have been found in R. gnavus E1. This observation suggests that
raffinose is transported within the cytoplasm of R. gnavus E1 by
an ABC transporter and subsequently hydrolyzed by the ␣-ga-
lactosidase activity of AgaSK into galactose and sucrose. The
sucrose produced thereby is instantly taken in charge by the
kinase activity of AgaSK to release sucrose-6-phosphate, the
substrate of sucrose-6 phosphorylase (Fig. 4). The sucrose,
which escapes the kinase activity of AgaSK, is probably cleaved
by sucrose phosphorylase, encoded by the gene adjacent to the
AgaSK gene. These findings place AgaSK at the crossroad of the
two glycolytic pathways for sucrose utilization described so far.
Concluding Remarks—In conclusion, sucrose and raffinose
are the most abundant soluble carbohydrates found in plants
(9), and they are probably part of the human carbohydrate
energy intake. Although sucrose from diet is the substrate of the
human intestinal sucrase-isomaltase, raffinose is degraded into
galactose and sucrose only by intestinal microbial enzymes.
Therefore, for the intestinal microbiota, a major external
source of sucrose is probably raffinose, pointing out the impor-
tance of its metabolism for bacteria. In the strict anaerobic
Gram-positive bacterium R. gnavus, a single enzyme, AgaSK, is
able to produce sucrose-6-phosphate directly from raffinose. The
1. Ley, R. E., Turnbaugh, P. J., Klein, S., and Gordon, J. I. (2006) Nature 444,
1022–1023
2. Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R.,
and Gordon, J. I. (2006) Nature 444, 1027–1031
3. Greiner, T., and Bäckhed, F. (2011) Trends Endocrinol. Metab. 22,
117–123
4. Turnbaugh, P. J., Hamady, M., Yatsunenko, T., Cantarel, B. L., Duncan, A.,
Ley, R. E., Sogin, M. L., Jones, W. J., Roe, B. A., Affourtit, J. P., Egholm, M.,
Henrissat, B., Heath, A. C., Knight, R., and Gordon, J. I. (2009) Nature 457,
480–484
5. Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L.,
Sargent, M., Gill, S. R., Nelson, K. E., and Relman, D. A. (2005) Science 308,
1635–1638
6. Armougom, F., Henry, M., Vialettes, B., Raccah, D., and Raoult, D. (2009)
PLoS One 4, e7125
7. Venema, K. (2010) Curr. Opin. Clin. Nutr. Metab. Care 13, 432–438
8. Neyrinck, A. M., and Delzenne, N. M. (2010) Curr. Opin. Clin. Nutr.
Metab. Care 13, 722–728
9. Trugo, L. C., Farah, A., and Cabral, L. (1995) Food Chem. 52, 385–387
10. Barrangou, R., Azcarate-Peril, M. A., Duong, T., Conners, S. B., Kelly,
R. M., and Klaenhammer, T. R. (2006) Proc. Natl. Acad. Sci. U.S.A. 103,
3816–3821
11. Hugouvieux-Cotte-Pattat, N., and Charaoui-Boukerzaza, S. (2009) J. Bac-
teriol. 191, 6960–6967
12. Caputto, R., Leloir, L. R., et al. (1949) J. Biol. Chem. 179, 497–498
13. Reid, S. J., and Abratt, V. R. (2005) Appl. Microbiol. Biotechnol. 67,
312–321
14. Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V.,
and Henrissat, B. (2009) Nucleic Acids Res. 37, D233–D238
15. Rigden, D. J. (2002) FEBS Lett. 523, 17–22
16. Henrissat, B., and Bairoch, A. (1996) Biochem. J. 316, 695–696
17. Garman, S. C., Hannick, L., Zhu, A., and Garboczi, D. N. (2002) Structure
10, 425–434
18. Garman, S. C., and Garboczi, D. N. (2004) J. Mol. Biol. 337, 319–335
19. Comfort, D. A., Bobrov, K. S., Ivanen, D. R., Shabalin, K. A., Harris, J. M.,
Kulminskaya, A. A., Brumer, H., and Kelly, R. M. (2007) Biochemistry 46,
3319–3330
two distinct enzymatic activities are related to two domains. The 20. Fredslund, F., Abou Hachem, M., Jonsgaard Larsen, R., Gerd Sørensen, P.,
Coutinho, P. M., Lo Leggio, L., and Svensson, B. (2011) J. Mol. Biol. 412,
N-terminal domain is responsible for the ␣-galactosidase activity
466–480
of AgaSK, whereas the C-terminal domain catalyzes the phospho-
21. Hashimoto, H., Katayama, C., Goto, M., Okinaga, T., and Kitahata, S.
rylation of the sucrose produced thereby on the C6 position of
(1995) Biosci. Biotechnol. Biochem. 59, 619–623
glucose. We can speculate about the interest for R. gnavus E1 to
possess a bifunctional protein having two enzymatic activities
within the same scaffold. We can hypothesize that it could exem-
plify a very efficient metabolic strategy developed by this human
microbiota to metabolize raffinose, a potentially major source of
carbohydrate available in the gut. Our studies contribute to a
deeper understanding of the mechanisms by which Firmicutes use
nutrients that are non-digestible by the host and optimize their
metabolism for survival in such an extreme competitive environ-
ment as the intestinal tract.
22. Van Laere, K. M., Hartemink, R., Beldman, G., Pitson, S., Dijkema, C.,
Schols, H. A., and Voragen, A. G. (1999) Appl. Microbiol. Biotechnol. 52,
681–688
23. Spangenberg, P., André, C., Dion, M., Rabiller, C., and Mattes, R. (2000)
Carbohydr. Res. 329, 65–73
24. Tzortzis, G., Jay, A. J., Baillon, M. L., Gibson, G. R., and Rastall, R. A. (2003)
Appl. Microbiol. Biotechnol. 63, 286–292
25. Zhao, H., Lu, L., Xiao, M., Wang, Q., Lu, Y., Liu, C., Wang, P., Kumagai, H.,
and Yamamoto, K. (2008) FEMS Microbiol. Lett. 285, 278–283
26. Goulas, T., Goulas, A., Tzortzis, G., and Gibson, G. R. (2009) Appl. Micro-
biol. Biotechnol. 82, 471–477
27. Nakai, H., Baumann, M. J., Petersen, B. O., Westphal, Y., Hachem, M. A.,
Dilokpimol, A., Duus, J. Ø., Schols, H. A., and Svensson, B. (2010) FEBS J.
277, 3538–3551
Acknowledgments—We are indebted to S. Rabot (INRA Jouy-en-Josas,
France) for providing axenic rats of the animal facility ANAXEM
platform and to C. Bridonneau and P. Guillaume for skillful technical
assistance. Genome sequencing was carried out by Genoscope,
AP05/06 Project 27. We thank also Dr. Ray Owens from the Depart-
ment for Structural Biology at the University of Oxford for the pOPIN
E vector. We thank the European Synchrotron Radiation Facility and
the Synchrotron Soleil for provision of beam time and assistance with
data collection.
28. Blaut, M. (2002) Eur. J. Nutr. 41, Suppl. 1, I11–I16
29. Tzortzis, G., Goulas, A. K., Baillon, M. L., Gibson, G. R., and Rastall, R. A.
(2004) Appl. Microbiol. Biotechnol. 64, 106–111
30. Rastall, R. A., Gibson, G. R., Gill, H. S., Guarner, F., Klaenhammer, T. R.,
Pot, B., Reid, G., Rowland, I. R., and Sanders, M. E. (2005) FEMS Microbiol.
Ecol. 52, 145–152
31. Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C.,
Nielsen, T., Pons, N., Levenez, F., Yamada, T., Mende, D. R., Li, J., Xu, J., Li,
S., Li, D., Cao, J., Wang, B., Liang, H., Zheng, H., Xie, Y., Tap, J., Lepage, P.,
Bertalan, M., Batto, J. M., Hansen, T., Le Paslier, D., Linneberg, A., Nielsen,
40822 JOURNAL OF BIOLOGICAL CHEMISTRY
VOLUME 286•NUMBER 47•NOVEMBER 25, 2011