‡ The minimal rate advantage for Th4+ cleavage of micellized substrate 3,
relative to nonmicellar analogue 4, contrasts with rate enhancements of
above pH 5. Brij-35 has been previously used to stabilize metal
4,8
cation catalysts for phosphodiester hydrolysis.
50–70 previously observed with Eu3 or UO
+
2+
toward aggregated
substrates (refs. 4, 14). The differing behaviour may be due to the Brij
IV
2
In contrast to Ce , which requires both a complexing ligand
IV
and micellar Brij to remain in solution above pH 4–5, Th is
comicelles employed with Th4
+
.
stabilized by Brij alone; added ligands merely sap its reactivity.
2
2
21
4+
For example, kobs = 2.8 3 10
s
(Th –BNPP in aqueous
s
2
3
21
Brij at pH 6) is reduced to 1.4 3 10
upon the addition of
1
(a) R. Breslow and D. L. Huang, Proc. Natl. Acad. Sci. USA, 1991, 88,
1
equiv. of N-octyl-d-glucamine, a ligand useful in the
IV 3
4080; (b) J. R. Morrow, L. A. Buttrey, V. M. Shelton and K. A. Berback,
J. Am. Chem. Soc., 1992, 114, 1903; (c) J. R. Morrow, L. A. Buttrey and
K. A. Berback, Inorg. Chem., 1992, 31, 16; (d) M. Komiyama,
K. Matsumura and Y. Matsumoto, J. Chem. Soc., Chem. Commun.,
stabilization of Ce .
4+
2+
Th is much more reactive than UO
2
toward substrates 1 or
2
. The rate constants of Table 1 can be compared with k(pH
2
6
21
2+
24
4
s
.9) = 9.5 3 10
s
for 1 (UO
2
–HTMED) or 2.2 3 10
1
992, 640; (e) H.-J. Schneider, J. Rammo and R. Hettich, Angew.
2
1
2+
(UO
2
) for 2.† Using BNPP hydrolysis as a reactivity
Chem., Int. Ed. Engl., 1993, 32, 1716; (f) J. Rammo and H.-J. Schneider,
Liebigs Ann., 1996, 1757; (g) B. K. Takasaki and J. Chin, J. Am. Chem.
Soc., 1993, 115, 9337; (h) B. K. Takasaki and J. Chin, J. Am. Chem.
Soc., 1995, 117, 8582; (i) R. Breslow and B. Zhang, J. Am. Chem. Soc.,
1994, 116, 7893.
2 B. K. Takasaki and J. Chin, J. Am. Chem. Soc., 1994, 116, 1121;
M. Komiyama, T. Kodama, N. Takeda, J. Sumaoka, T. Shiiba,
Y. Matsumoto and M. Yashiro, J. Biochem., 1994, 115, 809;
M. Komiyama, T. Shiiba, T. Kodama, N. Takeda, J. Sumaoka and
M. Yashiro, Chem. Lett., 1994, 1025; J. Sumaoka, S. Miyama and
M. Komiyama, J. Chem. Soc., Chem. Commun., 1994, 1755;
M. Komiyama, N. Takeda, Y. Takahashi, H. Uchida, T. Shiiba,
T. Kodama and M. Yashiro, J. Chem. Soc., Perkin Trans. 2, 1995,
269.
4+
IV
measure, Th is comparable to Ce –palmitate in Brij (k = 2.6
2
2
3
3+
24
3
10 , pH 7), but more reactive than Eu (k = 1.7 3 10
1e,f 3+
2
1
s
, pH 7, 50 °C), or various Eu complexes (2.0–6.7 3
4 1f,9
2
21
, pH 7–7.4, 25–50 °C), La3+ (1.4 3 10
27 21 1g
1
0
s
s
)
or
3+
23 21
1g
3+
La –H
2
O
2
(4.8 3 10
s , both at pH 7, 25 °C), 1:1 La –
s , pH 7, 50 °C), or binuclear azamacro-
3+
24 21
10
Fe (2.8 3 10
3+
23 21
3+
cyclic complexes of Eu (1.4 3 10
s
, pH 7, 50 °C) or Pr
2
4
21
11
(8.4 3 10
s , pH 7, 50 °C).
It is clear from these comparisons that Th and CeIV are the
IV
most reactive actinide or lanthanide cations yet reported for the
acceleration of BNPP hydrolysis. A similar conclusion follows
IV
IV
from the reactivity of Th toward substrate 2. Indeed, Th and
CeIV appear to be more reactive toward BNPP or 21c than any
3 K. Bracken, R. A. Moss and K. Ragunathan, unpublished work.
4
5
R. A. Moss, K. Bracken and J. Zhang, Chem. Commun., 1997, 563.
S. Cotton, Lanthanides and Actinides, Oxford University press, New
York, 1991, pp. 115–121.
other metal cations thus far described, including (complexes of)
cobalt12 and copper.
13
Toward long-chain phosphodiester substrate 3, comicellized
with 2 mm Brij-35 (critical micelle concentration, 0.06–0.09
6
T. Ihara, H. Shimura, K. Ohmori, H. Tsuji, J. Takeuchi and M. Takagi,
Chem. Lett., 1996, 687.
8
a
4+
23 21
mm ), excess Th affords kobs = 1.2 3 10
s
. Compar-
7 J. Burgess, Metal Ions in Solution, Halsted Press, New York, 1978,
pp. 27–28.
8 (a) S. H. Gellman, R. Petter and R. Breslow, J. Am. Chem. Soc., 1986,
108, 2388; (b) J. G. J. Weijnen and J. F. J. Engbersen, Recl. Trav. Chim.
Pays-Bas, 1993, 112, 351.
2+
isons are lacking except for UO
2
–HTMED where kobs = 1.1
2
4
21 4
4+
3
10
s
. Perhaps a fairer comparison of Th –Brij vs.
2
+
4+
UO
2
–HTMED is with the short-chain substrate 4, where Th
2+
(
(
Table 1) manifests a 500-fold rate advantage over UO
2
2
6
21
9 J. R. Morrow, K. Aures and D. Epstein, J. Chem. Soc., Chem. Commun.,
k = 1.7 3 10
s ).‡
1
995, 2431.
IV
In conclusion, Th cations are an extraordinarily reactive,
1
1
0 N. Takeda, M. Irisawa and M. Komiyama, J. Chem. Soc., Chem.
Commun., 1994, 2773.
1 K. G. Ragunathan and H.-J. Schneider, Angew. Chem., Int. Ed. Engl.,
1996, 35, 1219.
readily employed promoter of the hydrolysis of a variety of
model phosphodiester substrates. We are continuing to probe
their application to challenging problems in this area.
We are grateful to the U.S. Army Research Office for
financial support.
12 J. Chin, Acc. Chem. Res., 1991, 24, 145 and references cited therein.
13 E. K o¨ vari and R. Kr a¨ mer, J. Am. Chem. Soc., 1996, 118, 12 704;
K. A. Deal and J. N. Burstyn, Inorg. Chem., 1996, 35, 2792.
1
4 R. A. Moss, B. D. Park, P. Scrimin and G. Ghirlanda, J. Chem. Soc.,
Chem. Commun., 1995, 1627.
Footnotes and References
†
No attempt is made in the kinetic comparisons to correct for differing
conditions or cation–substrate ratios. Rather, the maximum rate constants
available in the literature are compared to those of Th4+
.
Received in Corvallis, OR, USA, 22nd May 1997; 7/03568C
1640
Chem. Commun., 1997