ACS Chemical Biology
Articles
(
13) Sio, C. F., Otten, L. G., Cool, R. H., Diggle, S. P., Braun, P. G.,
ACKNOWLEDGMENTS
We thank the following for generous gifts: M. Whitely (Univ. of
Texas, Austin) for P. aeruginosa PA14 ID27758, J. Leadbetter
CA Inst Tech) for a PvdQ expression plasmid, and W.
Bachovchin & D. O’Connell (Tufts University) for 1-
pentadecylboronic acid (C15-B(OH) ). We thank J. Golihar
■
Bos, R., Daykin, M., Camara, M., Williams, P., and Quax, W. J. (2006)
Quorum quenching by an N-acyl-homoserine lactone acylase from
Pseudomonas aeruginosa PAO1. Infect. Immun. 74, 1673−1682.
(
(14) Wahjudi, M., Murugappan, S., van Merkerk, R., Eissens, A. C.,
Visser, M. R., Hinrichs, W. L., and Quax, W. J. (2012) Development of
a dry, stable and inhalable acyl-homoserine-lactone-acylase powder
formulation for the treatment of pulmonary Pseudomonas aeruginosa
infections. Eur. J. Pharm. Sci. 48, 637−643.
2
(
Univ. of Texas, Austin) for help designing the growth assays.
This work was supported in part by the Robert A. Welch
Foundation (Grant F-1572 to W.F.) and by Loyola University
Chicago (to D.L.). We thank Ruslan Sanishvili (GM/CA-CAT,
sector 23) at Advanced Photon Source, Argonne National
Laboratory (Argonne, IL) for help with data collection; GM/
CA at APS has been funded in whole or in part with Federal
funds from the National Cancer Institute (Y1-CO-1020) and
the National Institute of General Medical Sciences (Y1-GM-
(15) Thomas, P. W., Stone, E. M., Costello, A. L., Tierney, D. L., and
Fast, W. (2005) The quorum-quenching lactonase from Bacillus
thuringiensis is a metalloprotein. Biochemistry 44, 7559−7569.
(
16) Chow, J. Y., Wu, L., and Yew, W. S. (2009) Directed evolution
of a quorum-quenching lactonase from Mycobacterium avium subsp.
paratuberculosis K-10 in the amidohydrolase superfamily. Biochemistry
4
(
8, 4344−4353.
17) Momb, J., Wang, C., Liu, D., Thomas, P. W., Petsko, G. A., Guo,
1
104). Use of the Advanced Photon Source was supported by
the U.S. Department of Energy, Basic Energy Sciences, Office
of Science, under contract No. DE-AC02-06CH11357.
H., Ringe, D., and Fast, W. (2008) Mechanism of the quorum-
quenching lactonase (AiiA) from Bacillus thuringiensis. 2. Substrate
modeling and active site mutations. Biochemistry 47, 7715−7725.
(
18) Drake, E. J., and Gulick, A. M. (2011) Structural characterization
REFERENCES
and high-throughput screening of inhibitors of PvdQ, an NTN
hydrolase involved in pyoverdine synthesis. ACS Chem. Biol. 6, 1277−
1286.
■
(
1) Navon-Venezia, S., Ben-Ami, R., and Carmeli, Y. (2005) Update
on Pseudomonas aeruginosa and Acinetobacter baumannii infections in
the healthcare setting. Curr. Opin. Infect. Dis. 18, 306−313.
(19) Copley, S. D. (2012) Moonlighting is mainstream: paradigm
adjustment required. Bioessays 34, 578−588.
(
2) Frederick, R. E., Mayfield, J. A., and DuBois, J. L. (2009) Iron
trafficking as an antimicrobial target. Biometals 22, 583−593.
(20) Baker, S. J., Ding, C. Z., Akama, T., Zhang, Y. K., Hernandez, V.,
and Xia, Y. (2009) Therapeutic potential of boron-containing
compounds. Future Med. Chem. 1, 1275−1288.
(
3) Romero, M., Acuna, L., and Otero, A. (2012) Patents on quorum
quenching: interfering with bacterial communication as a strategy to
fight infections. Recent Pat. Biotechnol. 6, 2−12.
(21) Smoum, R., Rubinstein, A., Dembitsky, V. M., and Srebnik, M.
(2012) Boron containing compounds as protease inhibitors. Chem.
Rev. 112, 4156−4220.
(
4) Huang, J. J., Han, J. I., Zhang, L. H., and Leadbetter, J. R. (2003)
Utilization of acyl-homoserine lactone quorum signals for growth by a
soil pseudomonad and Pseudomonas aeruginosa PAO1. Appl. Environ.
Microbiol. 69, 5941−5949.
(22) Copeland, R. A. (2005) Evaluation of Enzyme Inhibitors in Drug
Discovery: A Guide for Medicinal Chemists and Pharmacologists, pp 178−
(
5) Hannauer, M., Schafer, M., Hoegy, F., Gizzi, P., Wehrung, P.,
2
13, Wiley-Interscience, Hoboken, NJ.
Mislin, G. L., Budzikiewicz, H., and Schalk, I. J. (2012) Biosynthesis of
the pyoverdine siderophore of Pseudomonas aeruginosa involves
precursors with a myristic or a myristoleic acid chain. FEBS Lett.
(
23) Philipp, M., and Bender, M. L. (1971) Inhibition of serine
proteases by arylboronic acids. Proc. Natl. Acad. Sci. U.S.A. 68, 478−
80.
24) Zervosen, A., Herman, R., Kerff, F., Herman, A., Bouillez, A.,
4
(
5
(
(
86, 96−101.
6) Otto, B. R., Verweij-van Vught, A. M., and MacLaren, D. M.
1992) Transferrins and heme-compounds as iron sources for
pathogenic bacteria. Crit. Rev. Microbiol. 18, 217−233.
7) Schalk, I. J., and Guillon, L. (2012) Pyoverdine biosynthesis and
Prati, F., Pratt, R. F., Frere, J. M., Joris, B., Luxen, A., Charlier, P., and
Sauvage, E. (2011) Unexpected tricovalent binding mode of boronic
acids within the active site of a penicillin-binding protein. J. Am. Chem.
Soc. 133, 10839−10848.
(
secretion in Pseudomonas aeruginosa: implications for metal homeo-
stasis. Environ. Microbiol. 15, 1661−1673.
(25) Transue, T. R., Krahn, J. M., Gabel, S. A., DeRose, E. F., and
London, R. E. (2004) X-ray and NMR characterization of covalent
(
8) Ferreras, J. A., Ryu, J. S., Di Lello, F., Tan, D. S., and Quadri, L. E.
complexes of trypsin, borate, and alcohols. Biochemistry 43, 2829−
(
2005) Small-molecule inhibition of siderophore biosynthesis in
Mycobacterium tuberculosis and Yersinia pestis. Nat. Chem. Biol. 1,
9−32.
9) Neres, J., Wilson, D. J., Celia, L., Beck, B. J., and Aldrich, C. C.
2008) Aryl acid adenylating enzymes involved in siderophore
2
839.
(26) Katz, B. A., Finer-Moore, J., Mortezaei, R., Rich, D. H., and
2
Stroud, R. M. (1995) Episelection: novel Ki ∼ nanomolar inhibitors of
serine proteases selected by binding or chemistry on an enzyme
surface. Biochemistry 34, 8264−8280.
(
(
biosynthesis: fluorescence polarization assay, ligand specificity, and
discovery of non-nucleoside inhibitors via high-throughput screening.
Biochemistry 47, 11735−11749.
(27) Bachovchin, W. W., Wong, W. Y., Farr-Jones, S., Shenvi, A. B.,
and Kettner, C. A. (1988) Nitrogen-15 NMR spectroscopy of the
catalytic-triad histidine of a serine protease in peptide boronic acid
inhibitor complexes. Biochemistry 27, 7689−7697.
(
10) Somu, R. V., Boshoff, H., Qiao, C., Bennett, E. M., Barry, C. E.,
3rd, and Aldrich, C. C. (2006) Rationally designed nucleoside
(28) Bokhove, M., Nadal Jimenez, P., Quax, W. J., and Dijkstra, B. W.
antibiotics that inhibit siderophore biosynthesis of Mycobacterium
tuberculosis. J. Med. Chem. 49, 31−34.
(
2010) The quorum-quenching N-acyl homoserine lactone acylase
PvdQ is an Ntn-hydrolase with an unusual substrate-binding pocket.
(
11) Theriault, J. R., Wurst, J., Jewett, I., Verplank, L., Perez, J. R.,
Proc. Natl. Acad. Sci. U.S.A. 107, 686−691.
Gulick, A. M., Drake, E. J., Palmer, M., Moskowitz, S., Dasgupta, N.,
Brannon, M. K., Dandapani, S., Munoz, B., and Schreiber, S. (2013)
Identification of a small molecule inhibitor of Pseudomonas aeruginosa
PvdQ acylase, an enzyme involved in siderophore pyoverdine
synthesis, Probe Reports from NIH Molecular Libraries Program,
National Center for Biotechnology Information, Bethesda, MD.
(29) Chilov, G. G., Sidorova, A. V., and Svedas, V. K. (2007)
Quantum chemical studies of the catalytic mechanism of N-terminal
nucleophile hydrolase. Biochemistry (Mosc) 72, 495−500.
(30) Lomovskaya, O., Warren, M. S., Lee, A., Galazzo, J., Fronko, R.,
Lee, M., Blais, J., Cho, D., Chamberland, S., Renau, T., Leger, R.,
Hecker, S., Watkins, W., Hoshino, K., Ishida, H., and Lee, V. J. (2001)
Identification and characterization of inhibitors of multidrug resistance
efflux pumps in Pseudomonas aeruginosa: novel agents for combination
therapy. Antimicrob. Agents Chemother. 45, 105−116.
(
12) Nadal Jimenez, P., Koch, G., Papaioannou, E., Wahjudi, M.,
Krzeslak, J., Coenye, T., Cool, R. H., and Quax, W. J. (2010) Role of
PvdQ in Pseudomonas aeruginosa virulence under iron-limiting
conditions. Microbiology 156, 49−59.
2
199
dx.doi.org/10.1021/cb400345h | ACS Chem. Biol. 2013, 8, 2192−2200