D
I. K. Sideri et al.
Letter
Synlett
Based on previous reports, we propose a mechanism for
this photocatalytic hydroxylation of arylboronic acids as
outlined in Scheme 4. Visible-light irradiation of the cata-
lyst provides the excited intermediate that oxidizes the
base, by a single-electron-transfer (SET) process, to afford
the radical cation of the base and the radical anion of the
catalyst. This radical anion pair interacts with the boronic
acid and water and affords an intermediate that is attacked
by water. Hydrolysis affords the desired product. A second
mechanism involving a superoxide mechanism from oxy-
gen, 24 must also be considered to account for the yield ob-
tained (Table 2, entry 4 vs. entry 9).
(2) (a) Kormos, C. M.; Leadbeater, N. E. Tetrahedron 2006, 62, 4728.
(b) Tlili, A.; Xia, N.; Monnier, F.; Taillefer, M. Angew. Chem. Int.
Ed. 2009, 48, 8725. (c) Zhao, D. B.; Wu, N. J.; Zhang, S. Angew.
Chem. Int. Ed. 2009, 48, 8729. (d) Yang, D. S.; Fu, H. Chem. Eur. J.
2010, 16, 2366.
(3) (a) George, T.; Mabon, R.; Sweeney, G.; Sweeney, J. B.; Tavassoli,
A. J. J. Chem. Soc., Perkin Trans. 1 2000, 2529. (b) Hanson, P.;
Jones, J. R.; Taylor, A. B.; Walton, P. H.; Timms, A. W. J. Chem.
Soc., Perkin Trans. 2 2002, 1135. (c) Hoarau, C.; Pettus, T. R. R.
Synlett 2003, 127.
(4) (a) Benjamin, R.; Travis, B. R.; Ciaramitaro, B. P.; Borhan, B. Eur. J.
Org. Chem. 2002, 3429. (b) Maleczka, R. E.; Shi, F.; Holmes, D.;
Smith, M. R. III J. Am. Chem. Soc. 2003, 125, 7792. (c) Prakash, G.
K. S.; Chacko, S.; Panja, C.; Thomas, T. E.; Gurung, L.; Rasul, G.;
Mathew, T.; Olah, G. A. Adv. Synth. Catal. 2009, 351, 1567.
(5) Simon, J.; Salzbrunn, S.; Prakash, G. K. S.; Petasis, N. A.; Olah, G.
A. J. Org. Chem. 2001, 66, 633.
(6) Webb, K. S.; Levy, D. Tetrahedron Lett. 1995, 36, 5117.
(7) Zhu, C.; Wang, R.; Falck, J. R. Org. Lett. 2012, 14, 3494.
(8) Chen, D.-S.; Huang, J.-M. Synlett 2013, 24, 499.
visible light
iPr2NEt
O
*
O
OMe
OMe
OMe
OMe
iPr2NEt
Ph
Ph
Ph
Ph
O
ArB(OH)2
H2O
OMe
OMe
Ph
(9) Kianmehr, E.; Yahyaee, M.; Tabatabai, K. Tetrahedron Lett. 2007,
48, 2713.
Ph
(10) Guo, S.; Lu, L.; Cai, H. Synlett 2013, 24, 1712.
(11) Bommegowda, Y. K.; Mallesha, N.; Vinayaka, A. C.; Sadashiva, M.
P. Chem. Lett. 2016, 45, 268.
OH
OH
hydrolysis
Ar B(OH)2
OH
O
B
ArOH
Ar
–OH
(12) Cheng, G.; Zeng, X.; Cui, X. Synthesis 2014, 46, 295.
(13) Gogoi, P.; Bezboruah, P.; Gogoi, J.; Boruah, R. C. Eur. J. Org. Chem.
2013, 7291.
Scheme 4 Proposed mechanism for the photocatalytic hydroxylation
of arylboronic acids
(14) (a) Ruso, J. S.; Rajendiran, N.; Kumaran, R. S. Tetrahedron Lett.
2014, 55, 2345. (b) Chatterjee, N.; Chowdhury, H.; Sneh, K.;
Goswami, A. Tetrahedron Lett. 2015, 56, 172. (c) Paul, A.;
Chatterjee, D.; Rajkamal Halder, T.; Banerjee, S.; Yadav, S. Tetra-
hedron Lett. 2015, 56, 2496.
In conclusion, a green and cheap photoorganocatalytic
pathway for the synthesis of substituted phenols is present-
ed. Starting from a variety of substituted boronic acids, the
desired products were afforded in good to high yields utiliz-
ing 2,2-dimethoxy-2-phenylacetophenone as the photocat-
alyst.
(15) (a) Xu, J.; Wang, X.; Shao, C.; Su, D.; Cheng, G.; Hu, Y. Org. Lett.
2010, 12, 1964. (b) Yang, H.; Li, Y.; Jiang, M.; Wang, J.; Fu, H.
Chem. Eur. J. 2011, 17, 5652. (c) Inamoto, K.; Nozawa, K.;
Yonemoto, M.; Kondo, Y. Chem. Commun. 2011, 47, 11775.
(d) Dar, B. A.; Bhatti, P.; Singh, A. P.; Lazar, A.; Sharma, P. R.;
Sharma, M.; Singh, B. Appl. Catal., A 2013, 466, 60. (e) Yang, D.;
An, B.; Wei, W.; Jiang, M.; You, J.; Wang, H. Tetrahedron 2014, 70,
3630. (f) Affrose, A.; Azath, I. A.; Dhakshinamoorthy, A.;
Pitchumani, K. J. Mol. Catal. A: Chem. 2014, 395, 500.
(16) (a) Zheng, J.; Lin, S.; Zhu, X.; Jiang, B.; Yang, Z.; Pan, Z. Chem.
Commun. 2012, 48, 6235. (b) Wang, L.; Zhang, W.; Su, D. S.;
Meng, X.; Xiao, F.-S. Chem. Commun. 2012, 48, 5476.
(17) Begum, T.; Gogoi, A.; Gogoi, P. K.; Bora, U. Tetrahedron Lett.
2015, 56, 95.
Funding Information
The authors gratefully acknowledge the Latsis Foundation for finan-
cial support through the program ‘EPISTHMONIKES MELETES 2015’
(PhotoOrganocatalysis: Development of new environmentally-friend-
ly methods for the synthesis of compounds for the pharmaceutical
and chemical industry) and the Laboratory of Organic Chemistry of
the Department of Chemistry of the National and Kapodistrian Uni-
versity of Athens. E.V. would like to thank the National Scholarship
Foundation (IKY) for financial support through a doctoral fellowship. )(
(18) Chowdhury, A. D.; Mobin, S. M.; Mukherjee, S.; Bhaduri, S.;
Lahiri, G. K. Eur. J. Inorg. Chem. 2011, 3232.
(19) Gogoi, N.; Gogoi, P. K.; Borah, G.; Bora, U. Tetrahedron Lett. 2016,
57, 4050.
Supporting Information
(20) (a) Hosoi, K.; Kuriyama, Y.; Inagi, S.; Fuchigami, T. Chem.
Commun. 2010, 46, 1284. (b) Jiang, H.; Lykke, L.; Pedersen, S. U.;
Xiao, W.-J.; Jørgensen, K. A. Chem. Commun. 2012, 48, 7203.
(c) Qi, H.-L.; Chen, D.-S.; Ye, J.-S.; Huang, J.-M. J. Org. Chem. 2013,
78, 7482.
Supporting information for this article is available online at
S
u
p
p
ortiInfogrmoaitn
S
u
p
p
ortioInfgrmoaitn
(21) (a) Cammidge, A. N.; Goddard, V. H. M.; Schubert, C. P. J.; Gopee,
H.; Hughes, D. L.; Gonzalez-Lucas, D. Org. Lett. 2011, 13, 6034.
(b) Kotoučová, H.; Strnadová, I.; Kovandová, M.; Chudoba, J.;
Dvořáková, H.; Cibulka, R. Org. Biomol. Chem. 2014, 12, 2137.
(22) (a) Zou, Y.-Q.; Chen, J.-R.; Liu, X.-P.; Lu, L.-Q.; Davis, R. L.;
Jørgensen, K. A.; Xiao, W.-J. Angew. Chem. Int. Ed. 2012, 51, 784.
(b) Yu, X.; Cohe, S. M. Chem. Commun. 2015, 51, 9880. (c) Toyao,
References and Notes
(1) (a) Tyman, J. H. P. Synthetic and Natural Phenols; Elsevier: New
York, 1996. (b) Rappoport, Z. The Chemistry of Phenols; Wiley-
VCH: Weinheim, 2003.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2017, 28, A–E