besides NB and 4-NP, could be found during CuCl-
catalyzed substitution of NBD@CB while a large
amount of unknown byproducts were obtained during
the latter three substitutions (Figs. S10, S12 and S14 in
Supporting information). Thus the CuCl-catalyzed
substitution of 4-NBD/CB[7] complex to NB/4-NP is an
more effective and economic way than common
substitutions, and 4-NP can be easily separated from
NB by being simply basified to phenol salt.
References
[1] (a) J. Lagona, P. Mukhopadhyay, S. Chakrabarti, L. Isaacs, Angew. Chem.
Int. Ed. 44 (2005) 4844-4870;
(b) J.W. Lee, S. Samal, H.J. Kim, et al., Acc. Chem. Res. 36 (2003) 621-
630;
(c) X.J. Cheng, L.L. Liang, X.L. Ni, et al., Angew. Chem. Int. Ed. 52
( 2013) 7252-7255.
[2] (a) A.I. Day, R.J. Blanch, G.R. Lewis, et al., Angew. Chem. Int. Ed. 41
(2002) 275-277;
(b) S.J. Barrow, S. Kasera, O.A. Scherman, et al., Chem. Rev. 115 (2015)
12320-12406;
(c) S.K. Samanta, D. Moncelet, V. Briken, L. Isaacs, J. Am. Chem. Soc.
138 (2016) 14488-14496;
(d)A.T. Bockus, L.C. Smith, L. Isaacs, et al., J. Am. Chem. Soc. 138 (2016)
16549-16552;
Table 1
Substitution products of 4-NBD.a
(e) W. Zhang, Y.M. Zhang, Y. Liu, et al., Angew. Chem. Int. Ed. 55 (2016)
11452-11456;
(f) J.A. Finbloom, A.L. Furst, M.B. Francis, et al., J. Am. Chem. Soc. 139
(2017) 9691-9697;
(g) C. Li, M.J. Rowland, O.A. Scherman, et al., Adv. Mater. 27 (2015)
3298-3304;
(h) W. Wu, S. Song, J.X. Zhang, et al., Chin. Chem. Lett. 29 (2018) 95-98;
(i) Z.J. Yin, Z.Q. Wu, X.N. Xu, et al., Chin. Chem. Lett. 28 (2017) 1167-
1171;
(j) J. Tian, C. Yao, W.L. Yang, et al., Chin. Chem. Lett. 28 (2017) 798-806;
(k) T.T. Cao, X.Y. Yao, Q.C. Wang, et al., Chin. Chem. Lett. 26 (2015) 867-
871;
Entry
CB[7]
CuCl
(equiv.)
2.0
Temp (°C)
T (h)
NB
4-NP
(equiv.)
1
2b
3
1.5
0
0-5
0-5
70
1
61%
33%
(l) X.L. Ni, S. Chen, Y. Yang, Z. Tao, J. Am. Chem. Soc. 138 (2016) 6177-
6183;
2.0
44
<1%
<1%
(m) Y. Song, X. Huang, H. Hua, Q. Wang, Dyes and Pigments 137 (2017)
229-235;
0
2.0
12
3%
10%
(n) J. Liu, Y. Lan, C. Abell, et al., Acc. Chem. Res. 50(2017) 208-217.
[3] (a) B.C. Pemberton, R. Raghunathan, S. Volla, J. Sivaguru, Chem. Eur. J.
4
1.5
0
0
70
12
4%
27%
18 (2012) 12178-12190;
(b) K.I. Assaf, W.M. Nau, Chem. Soc. Rev. 44 (2015) 394-418.
[4] (a) W.L.6Mock, T.A. Irra0, J.P. Wepsiec, T.L.6M0%animaran, J. Org. Chem. 48
(1983) 3619-3620;
5
0
70
a Reaction conditions: 0.422 mmol 4-NBD were dissolved in 30 mL
H2O.
(b) W.L. Mock, T.A. Irra, J.P. Wepsiec, M. Adhya, J. Org. Chem. 54
(1989) 5302-5308.
[5] (a) Y.H. Wang, H. Cong, Z. Tao, et al., Catal. Commun. 12 (2011) 1127-
1130;
b 300 mL H2O.
(b) H. Cong, Z.J. Li, Z. Tao, et al., J. Mol. Catal. A: Chem. 374-375 (2013)
32-38.
In summary, 4-NBD and CB[7] could form a complex
NBD@CB in a molar ratio of 1:1 in aqueous solution
and the binding constant is about 1.28×105 L/mol.
NBD@CB shows a better thermostability than 4-NBD in
aqueous solution, and its decomposition in the
presence of CuCl results in a high total yield of NB/4-NP
mixture (NB 61%, 4-NP 33%). In comparison, the
decomposition of 4-NBD in the presence of either CB[7]
or CuCl, or both absence, brings about significant
amounts of unknown byproducts. This work might
provide an economic and effective way to obtain
arenes or phenols through the substitution of
diazonium salts.
[6] S.Y. Jon, Y.H. Ko, K. Kim, et al., Cheminform 33 (2002) 1938-1939.
[7] (a) M. Pattabiraman, A. Natarajan, L.S. Kaanumalle, V. Ramamurthy, Org.
Lett. 7 (2005) 529-532;
(b) N. Barooah, B.C. Pemberton, J. Sivaguru, Org. Lett. 10 (2008) 3339-
3342;
(c) S.P. Gromov, A.I. Vedernikov, M.V. Alfimov, et al., Eur. J. Org. Chem.
13 (2010) 2587-2599;
(d) A.L. Koner, C. Márquez, M.H. Dickman, W.M. Nau, Angew. Chem.
Int. Ed. 123 (2011) 567-571.
[8] S.M. Bruno, A.C. Gomes, I.S. Gonçalves, et al., Org. Biomol. Chem. 14
(2016) 3873-3877.
[9] T.C. Lee, E. Kalenius, O.A. Scherman, et al., Nat. Chem. 5(2013) 376-382.
[10] (a) M. Wieland, J.L. Mieusset, U.H. Brinker, Tetrahedron Lett. 53 (2012)
4351-4353;
(b) C. Klöck, R.N. Dsouza, W.M. Nau, Org. Lett. 11 (2009) 2595-2598.
[11] H. Cong, T. Yamato, X. Feng, Z. Tao, J. Mol. Catal. A: Chem. 365 (2012)
181-185.
[12] S.M.D. Lima, J.A. Gómez, V.P. Barros, C.F.D.O. Graeff, G.J.F.O.
Demets, Polyhedron. 29 (2010) 3008-3013.
[13] (a) R. Anna, P.Q. Anna, M.M. Marcial, Chem. Rev. 106 (2006) 4622-
4643;
(b) D.W.B. Stone, J. Chem. Educ. 48 (1971) 413.
[14] E.S. Lewis, J.M. Insole, J. Am. Chem. Soc. 88 (1963) 32-34.
[15] (a) N. Kornblum, A.E. Kelley, G.D. Cooper, J. Am. Chem. Soc. 74 (1952)
3074-3074;
(b) H. Warson, Die Makromolekulare Chemie. 105 (1967) 246-250.
(d) D.F. Detar, T. Kosuge, J. Am. Chem. Soc. 80 (1958) 6072-6077.
[16] A. Citterio, F. Minisci, J. Org. Chem. 47 (1982) 1759-1761.
[17] (a) S.M. Liu, X.J. Wu, C.T. Wu, Chem. J. Chin. Univ. 25 (2004) 2038-
2041;
Acknowledgments
This work was financially supported by the National
Natural Science Foundation of China (No. 21572063
and 21372076), the Science Fund for Creative Research
Groups (No. 21421004), the Program of Introducing
Talents of Discipline to Universities (No. B16017), and
the Fundamental Research Funds for the Central
Universities (No. 222201717003).
(b) S.M. Liu, X.J. Wu, C.T. Wu, Chin. J. Org. Chem. 23 (2003) 263-264.