Paper
RSC Advances
References
1 A. Ding, Y. Zhang, Y. Chen, R. Rios, J. Hu and H. Guo,
Tetrahedron Lett., 2019, 60, 660–663.
2 H. Kotoucova, I. Strnadova, M. Kovandova, J. Chudoba,
H. Dvorakova and R. Cibulka, Org. Biomol. Chem., 2014, 12,
2137–2142.
3 W. Ding, J.-R. Chen, Y.-Q. Zou, S.-W. Duan, L.-Q. Lu and
W.-J. Xiao, Org. Chem. Front., 2014, 1, 151–154.
4 H. L. Qi, D. S. Chen, J. S. Ye and J. M. Huang, J. Org. Chem.,
2013, 78, 7482–7487.
5 H. Jiang, L. Lykke, S. U. Pedersen, W. J. Xiao and
K. A. Jorgensen, Chem. Commun., 2012, 48, 7203–7205.
6 K. Hosoi, Y. Kuriyama, S. Inagi and T. Fuchigami, Chem.
Commun., 2010, 46, 1284–1286.
7 E. Kianmehr, M. Yahyaee and K. Tabatabai, Tetrahedron
Lett., 2007, 48, 2713–2715.
Scheme 4 Mechanism studies.
8 Y. K. Bommegowda, N. Mallesha, A. C. Vinayaka and
M. P. Sadashiva, Chem. Lett., 2016, 45, 268–270.
9 J. Gatenyo, I. Vints and S. Rozen, Chem. Commun., 2013, 49,
7379–7381.
10 U. Bora and A. Gogoi, Synlett, 2012, 23, 1079–1081.
11 P. Gogoi, P. Bezboruah, J. Gogoi and R. C. Boruah, Eur. J. Org.
Chem., 2013, 2013, 7291–7294.
12 R. W. Chen Zhu and J. R. Falck, Org. Lett., 2012, 14, 3494–
3497.
13 W. Yin, X. Pan, W. Leng, J. Chen and H. He, Green Chem.,
2019, 21, 4614–4618.
Fig. 4 Proposed mechanism.
14 W. Z. Weng, H. Liang and B. Zhang, Org. Lett., 2018, 20,
4979–4983.
15 N. Gogoi, P. K. Gogoi, G. Borah and U. Bora, Tetrahedron
Lett., 2016, 57, 4050–4052.
16 A. D. Chowdhury, S. M. Mobin, S. Mukherjee, S. Bhaduri and
G. K. Lahiri, Eur. J. Inorg. Chem., 2011, 2011, 3232–3239.
17 S. Chatterjee and T. K. Paine, Inorg. Chem., 2015, 54, 9727–
9732.
irradiation reacts with molecular oxygen via SET to generate the
superoxide radical anion, which further reacted with the
boronic acid to form intermediate 10. Intermediate 10 then
abstracts a hydrogen atom from 9 to generate intermediate 12.
12 then undergoes rearrangement to form 13 and then hydro-
lysis to produce the nal product 2.
18 H. Yang, Y. Li, M. Jiang, J. Wang and H. Fu, Chem.–Eur. J.,
2011, 17, 5652–5660.
19 X. W. Jimin Xu, C. Shao, D. Su, G. Cheng and Y. Hu, Org.
Lett., 2010, 12, 1964–1967.
20 K. Inamoto, K. Nozawa, M. Yonemoto and Y. Kondo, Chem.
Commun., 2011, 47, 11775–11777.
21 S. Wertz and A. Studer, Green Chem., 2013, 15, 3116–3134.
22 T. Bach, Angew. Chem., Int. Ed., 2015, 54, 11294–11295.
23 Y. Liu, Y. Song, Y. You, X. Fu, J. Wen and X. Zheng, J. Saudi
Chem. Soc., 2018, 22, 439–448.
Conclusions
In conclusion, we developed a photochemically aerobic photo-
oxidation hydroxylation of boronic acids employing the poly-
meric photosensitizer AQ-PHEMA as the catalyst. The reaction
is excellent yielding and highly efficient and demonstrates
broad functional group tolerance. The AQ-PHEMA catalyst
could be easily recovered by simple ltration and reused for
more than 20 times. The excellent photocatalytic property, easy
separation, and recyclability meet the requirements of green
chemistry and showed great practical potentials.
24 S. Poplata, A. Troster, Y. Q. Zou and T. Bach, Chem. Rev.,
2016, 116, 9748–9815.
25 E. R. Shilpa and V. Gayathri, J. Saudi Chem. Soc., 2018, 22,
678–691.
26 R. Alonso and T. Bach, Angew. Chem., Int. Ed., 2014, 53, 4368–
4371.
Conflicts of interest
There are no conicts to declare.
27 A. M. Asiri, M. S. Al-Amoudi, S. A. Bazaid, A. A. Adam,
K. A. Alamry and S. Anandan, J. Saudi Chem. Soc., 2014, 18,
155–163.
Acknowledgements
We greatly acknowledge the nancial support from Shanghai
Scientic and Technological Innovation Project (18YF1428800).
28 Y. Zhang, J. Xu and H. Guo, Org. Lett., 2019, 21, 9133–9137.
This journal is © The Royal Society of Chemistry 2020
RSC Adv., 2020, 10, 7927–7932 | 7931