Biomacromolecules
Page 26 of 36
Page 26
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
(17) Zhang, C.; Shafi, R.; Lampel, A.; MacPherson, D.; Pappas, C. G.; Narang, V.;
Wang, T.; Maldarelli, C.; Ulijn, R. V. Switchable Hydrolase Based on Reversible
Formation of Supramolecular Catalytic Site Using a Self‐Assembling Peptide. Angew.
Chem. Int. Ed. 2017, 56, 14511-14515.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
(18) Al-Garawi, Z. S.; McIntosh, B. A.; Neill-Hall, D.; Hatimy, A. A.; Sweet, S. M.;
Bagley, M. C.; Serpell, L. C. The Amyloid Architecture Provides a Scaffold for
Enzyme-Like Catalysts. Nanoscale 2017, 9, 10773-10783.
(19) Rufo, C. M.; Moroz, Y. S.; Moroz, O. V.; Stohr, J.; Smith, T. A.; Hu, X.;
DeGrado, W. F.; Korendovych, I. V. Short Peptides Self-Assemble to Produce
Catalytic Amyloids. Nat. Chem. 2014, 6, 303-309.
(
20) Heier, J. L.; Mikolajczak, D. J.; Böttcher, C.; Koksch, B. Substrate Specificity of
an Actively Assembling Amyloid Catalyst. Pept. Sci. 2017, 108, e23003.
21) Lengyel, Z.; Rufo, C. M.; Moroz, Y. S.; Makhlynets, O. V.; Korendovych, I. V.
(
Copper-Containing Catalytic Amyloids Promote Phosphoester Hydrolysis and
Tandem Reactions. ACS Catal. 2018, 8, 59-62.
(22) Luong, T. Q.; Erwin, N.; Neumann, M.; Schmidt, A.; Loos, C.; Schmidt, V.;
Fändrich, M.; Winter, R. Hydrostatic Pressure Increases the Catalytic Activity of
Amyloid Fibril Enzymes. Angew. Chem. Int. Ed. 2016, 55, 12412-12416.
(23) Wang, M.; Lv, Y.; Liu, X.; Qi, W.; Su, R.; He, Z. Enhancing the Activity of
ACS Paragon Plus Environment