6
22 Inorganic Chemistry, Vol. 50, No. 2, 2011
Tjioe et al.
A key feature of many (ribo)nucleases and phosphatases is
find utility as artificial restriction enzymes in molecular bio-
logy research, and as nucleic acid-targeting therapeutics.
16-36
the presence of one or more metal ions within the active sites
of these enzymes that is crucial for activity. These ions faci-
litate phosphate cleavage/phosphoryl group transfer in a
variety of ways: (i) Lewis acid activation of the substrate
through coordination to the metal ion(s); (ii) provision of
metal-bound hydroxide or alkoxide groups to serve as
nucleophiles or bases; (iii) stabilization of transition states;
and (iv) assisting the departure of leaving groups. Functional
groups of amino acid side chains present within the enzyme
active sites serve to synergistically reinforce the catalytic
action of these metal ions. A good example is provided by
the well-studied enzyme alkaline phosphatase (AP), which
uses two zinc centers, in conjunction with key serine and
arginine residues, to help promote the rapid cleavage of
Many of the first generation enzyme mimics were simple
mononuclear chelate complexes featuring bidentate or tri-
dentate ligands, such as bipyridine (bipy), 1,4,7-triazacyclo-
nonane (tacn), and bis(2-pyridylmethyl)amine (BPA or
36-47
DPA).
More recently, increasing attention has beenpaid
to the design and synthesis of more sophisticated supporting
ligand structures featuring auxiliary amino, ammonium and
34,39,40,48-59
guanidinium groups.
These yield complexes that
mimic the cooperativity between metal ions and key amino
acid residues found within the active sites of the metallo-
enzymes, and which generally cleave model phosphate esters
or nucleic acids significantly more rapidly than their non-
39,40
functionalized counterparts. Kr €a mer and co-workers,
for
9
phosphate monoesters. The positively charged guanidinium
example, showed that the copper(II) complex of a bipy-based
ligand with inbuilt ammonium groups (Figure 1A) cleaves a
model phosphate diester 2900-times faster than the complex
of the corresponding ligand without hydrogen bond donors.
group present in arginine is postulated to assist with substrate
activation and transition state stabilization, while the serine
residue provides the attacking nucleophile, leading to the
formation of a phosphoserinyl intermediate during AP’s
catalytic cycle.
4
1
More recently, Chin and co-workers have reported a
copper(II) complex with two amino groups (Figure 1B) in
close proximity to the metal center which accelerates the rate
Inspired by the occurrence of metal-containing (ribo)-
nucleases and phosphatases, many research groups have
sought to develop low-molecular weight metal complexes
that are able to cleave biologically important phosphate
0
0
of hydrolysis of 2 -3 -cyclic adenosine monophosphate
7
(cAMP) by a factor of 2 ꢀ 10 . Our group has studied the
DNA cleavage activity of a series of copper(II) complexes of
6,10-15
esters.
This research has been stimulated by the reali-
zation that small, hydrolytically active metal complexes (and
their conjugates with various targeting agents) may potentially
(
36) Qian, J.; Gu, W.; Liu, H.; Gao, F.; Feng, L.; Yan, S.; Liao, D.;
Cheng, P. Dalton Trans. 2007, 1060–1066.
37) Li, J.-H.; Wang, J.-T.; Zhang, L.-Y.; Chen, Z.-N.; Mao, Z.-W.; Ji,
L.-N. Inorg. Chim. Acta 2009, 362, 1918–1924.
38) Li, J.-H.; Wang, J.-T.; Hu, P.; Zhang, L.-Y.; Chen, Z.-N.; Mao,
Z.-W.; Ji, L.-N. Polyhedron 2008, 27, 1898–1904.
39) Kovari, E.; Heitker, J.; Kramer, R. J. Chem. Soc. Chem. Commun.
(
(
(
9) Wilcox, D. E. Chem. Rev. 1996, 96, 2435–2458.
10) Yun, J. W.; Tanase, T.; Lippard, S. J. Inorg. Chem. 1996, 35, 7590–
(
7
600.
(
(
11) Gomez-Tagle, P.; Yatsimirsky, A. K. J. Chem. Soc., Dalton Trans.
1
995, 1205–1206.
2
001, 2663–2670.
(40) Kovari, E.; Kramer, R. J. Am. Chem. Soc. 1996, 118, 12704–12709.
(41) Wall, M.; Linkletter, B.; Williams, D.; Lebuis, A.-M.; Hynes, R. C.;
(
(
(
(
12) Hay, R. W.; Govan, N. Polyhedron 1998, 17, 463–468.
13) Hegg, E. L.; Burstyn, J. N. J. Am. Chem. Soc. 1995, 117, 7015–7016.
14) Hegg, E. L.; Burstyn, J. N. Inorg. Chem. 1996, 35, 7474–7481.
15) Hegg, E. L.; Deal, K. A.; Kiessling, L. L.; Burstyn, J. N. Inorg. Chem.
Chin, J. J. Am. Chem. Soc. 1999, 121, 4710–4711.
42) Sheng, X.; Guo, X.; Lu, M.-X.; Lu, G., -Y.; Shao, Y.; Liu, F.; Xu, Q.
Bioconjugate Chem. 2008, 19, 490–498.
43) Kim, J. H.; Youn, M. R.; Lee, Y.-A.; Kim, J. M.; Kim, S. K. Bull.
Korean Chem. Soc. 2007, 28, 263–270.
44) Iranzo, O.; Elmer, T.; Richard, J. P.; Morrow, J. R. Inorg. Chem.
003, 42, 7737–7746.
45) Zhao, Y. M.; Zhu, J. H.; He, W. J.; Yang, Z.; Zhu, Y. G.; Li, Y. Z.;
(
1
997, 36, 1715–1718.
16) Erkkila, K. E.; Odom, D. T.; Barton, J. K. Chem. Rev. 1999, 99,
777–2796.
(
(
2
(
(
(
(
(
(
(
17) Rajski, S. R.; Williams, R. M. Chem. Rev. 1998, 98, 2723–2796.
2
18) Burger, R. M. Chem. Rev. 1998, 98, 1153–1170.
(
19) Sherman, S. E.; Lippard, S. J. Chem. Rev. 1987, 87, 1153–1181.
20) Cowan, J. A. Curr. Opin. Chem. Biol. 2001, 5, 634–642.
21) Morrow, J. R.; Iranzo, O. Curr. Opin. Chem. Biol. 2004, 8, 192–200.
22) Baker, B. F.; Lot, S. S.; Kringle, J.; Cheng-Flournoy, S.; Villiet, P.;
Zhang, J. F.; Guo, Z. J. Chem.;Eur. J. 2006, 12, 6621–6629.
(46) Wahnon, D.; Hynes, R. C.; Chin, J. J. Chem. Soc. Chem. Commun.
1994, 1441–1442.
Sasmor, H. M.; Siskowski, A. M.; Chappell, L. L.; Morrow, J. R. Nucl.
Acids. Res. 1999, 27, 1547–1551.
(47) Belousoff, M. J.; Tjioe, L.; Graham, B.; Spiccia, L. Inorg. Chem.
2008, 47, 8641–8651.
(48) Jubian, V.; Dixon, R. P.; Hamilton, A. D. J. Am. Chem. Soc. 1992,
114, 1120–1121.
(49) Dixon, R. P.; Geib, S. J.; Hamilton, A. D. J. Am. Chem. Soc. 1992,
114, 365–366.
(50) Jubian, V.; Veronese, A.; Dixon, R. P.; Hamilton, A. D. Angew.
Chem., Int. Ed. 1995, 34, 1237–1239.
(
23) Perreault, D. M.; Ansyln, E. V. Angew. Chem., Int. Ed. 1997, 36,
4
32–450.
(
24) Cheng, C. C.; Rokita, S. E.; Burrows, C. J. Angew. Chem., Int. Ed.
1
993, 32, 277–278.
(
25) Friedel, M. G.; Pieck, J. C.; Klages, J.; Dauth, C.; Kessler, H.; Carell,
T. Chem.;Eur. J. 2006, 12, 6081–6094.
(
(
26) Mancin, F.; Tecilla, P. New. J. Chem. 2007, 31, 800–817.
(51) Muche, M.-S.; Goebel, M. W. Angew. Chem., Int. Ed. 1996, 35, 2126–
2129.
27) Noll, D. M.; Mason, T. M.; Miller, P. S. Chem. Rev. 2006, 106,
2
5
5
77–301.
(52) Ariga, K.; Ansyln, E. V. J. Org. Chem. 1992, 57, 417–419.
(53) Ait-Haddou, H.; Sumaoka, J.; Wiskur, S. J.; Folmer-Andersen, J. F.;
Ansyln, E. V. Angew. Chem., Int. Ed. 2002, 41, 4013–4016.
(54) Feng, G.; Mareque-Rivas, J. C.; de-Rosales, R. T. M.; Williams,
N. H. J. Am. Chem. Soc. 2005, 127, 13470–13471.
(55) Feng, G.; Mareque-Rivas, J. C.; Williams, N. H. Chem. Commun.
2006, 1845–1847.
(56) Chen, X. Q.; Wang, J. Y.; Sun, S. G.; Fan, J. L.; Wu, S.; Liu, J. F.;
Ma, S. J.; Zhang, L. Z.; Peng, X. J. Bioorg. Med. Chem. Lett. 2008, 18,
109–113.
(57) He, J.; Hu, P.; Wang, Y. J.; Tong, M.-L.; Sun, H. Z.; Mao, Z.-W.; Ji,
L.-N. Dalton Trans. 2008, 3207–3214.
(58) Sheng, X.; Lu, X. M.; Chen, Y. T.; Lu, G., -Y.; Zhang, J. J.; Shao, Y.;
Liu, F.; Xu, Q. Chem.;Eur. J. 2007, 13, 9703–9712.
(59) Shao, Y.; Sheng, X.; Li, Y.; Jia, Z. L.; Zhang, J. J.; Liu, F.; Lu, G. -Y.
Bioconjugate Chem. 2008, 19, 1840–1848.
(
28) Hettich, R.; Schneider, H.-J. J. Am. Chem. Soc. 1997, 119, 5638–
647.
(
29) Ren, R.; Yang, P.; Zheng, W.; Hua, Z. Inorg. Chem. 2000, 39, 5454–
463.
(
30) Komiyama, M.; Kina, S.; Matsumura, K.; Sumaoka, J.; Tobey, S.;
Lynch, V. M.; Ansyln, E. V. J. Am. Chem. Soc. 2002, 124, 13731–13736.
31) Yang, M.-Y.; Richard, J. P.; Morrow, J. R. Chem. Commun. 2003,
832–2833.
32) Worm, K.; Chu, F.; Matsumoto, K.; Best, M. D.; Lynch, V. M.;
Ansyln, E. V. Chem.;Eur. J. 2003, 9, 741–747.
(
2
(
(
(
33) Jin, Y.; Cowan, J. A. J. Am. Chem. Soc. 2005, 127, 8408–8415.
34) An, Y.; Tong, M.-L.; Ji, L.-N.; Mao, Z.-W. Dalton Trans. 2006,
2
066–2071.
35) Corneillie, T. M.; Whetstone, P. A.; Lee, K. C.; Wong, J. P.; Meares,
C. F. Bioconjugate Chem. 2004, 15, 1389–1391.
(