Journal of Materials Chemistry A
Paper
clusters. Besides the photocatalytic performance, the cycling
stability of COCN-2 was studied in eight repeated tests of pho-
tocatalytic hydrogen production and each test was maintained
for 4 h (Fig. 4f). There was no signicant deactivation and no
structural collapse was detected (Fig. S20†), evidencing the
outstanding stability of the inherent structure of COCN-2.
References
1 J. Low, J. Yu, M. Jaroniec, S. Wageh and A. A. Al-Ghamdi, Adv.
Mater., 2017, 29, 1601694.
2 Z. Wang, C. Li and K. Domen, Chem. Soc. Rev., 2019, 48, 2109.
3 T. Hisatomi and K. Domen, Nat. Catal., 2019, 2, 387.
4
5
6
J. Fu, J. Yu, C. Jiang and B. Cheng, Adv. Energy Mater., 2018, 8,
701503.
Y. Zheng, L. Lin, X. Ye, F. Guo and X. Wang, Angew. Chem.,
Int. Ed., 2014, 53, 11926.
A. Indra, A. Acharjya, P. W. Menezes, C. Merschjann,
D. Hollmann, M. Schwarze, M. Aktas, A. Friedrich,
S. Lochbrunner, A. Thomas and M. Driess, Angew. Chem.,
Int. Ed., 2017, 56, 1653.
Z. Teng, N. Yang, H. Lv, S. Wang, M. Hu, C. Wang, D. Wang
and G. Wang, Chem, 2019, 5, 664.
1
Conclusions
In summary, we propose a facile strategy to construct novel
amphiphilic carbon and C–O–C chain linked melem units in
functional carbon nitride (COCN) by a facile copolymerizing
method. Notably, these inserted carbon and C–O–C units served
both as a carrier migration channel to enhance the trans-
portation and separation efficiency of photo-generated carriers
7
8
9
3 4
in the C N framework. Meanwhile, there is a huge improve-
G. Liao, Y. Gong, L. Zhang, H. Gao, G. J. Yang and B. Fang,
Energy Environ. Sci., 2019, 12, 2080.
Y. Xiao, G. Tian, W. Li, Y. Xie, B. Jiang, C. Tian, D. Zhao and
H. Fu, J. Am. Chem. Soc., 2019, 141, 2508.
ment in the adsorption and activation of oxygen molecules,
resulting in an acceleration of the production of superoxide
radicals and singlet oxygen. More importantly, the different
amounts of polar and non-polar structures inserted could
adjust the hydrophilic and hydrophobic properties of the
material surface, which facilitates the interactions of sulde or
water. Therefore, the optimized atomic tailoring of the sample
achieves superior photocatalytic performance by achieving
a seven and six-fold improvement for selective oxidation of
sulde to sulfoxide using air (nearly 100% conversion and
selectivity aer 3 h of illumination) and hydrogen production
1
1
1
0 P. Xia, S. Cao, B. Zhu, M. Liu, M. Shi, J. Yu and Y. Zhang,
Angew. Chem., Int. Ed., 2020, 59, 5218.
1 H. Che, G. Che, P. Zhou, C. Liu, H. Dong, C. Li, N. Song and
C. Li, Chem. Eng. J., 2020, 382, 122870.
2 J. Liao, W. Cui, J. Li, J. Sheng, H. Wang, X. a. Dong, P. Chen,
G. Jiang, Z. Wang and F. Dong, Chem. Eng. J., 2020, 379,
122282.
ꢀ
1
13 Z. Tong, D. Yang, Z. Li, Y. Nan, F. Ding, Y. Shen and Z. Jiang,
(
34.9 mmol h ), respectively. This study provides deep insight
ACS Nano, 2017, 11, 1103.
into and strategies for the atomic tailoring of carrier transfer
and surface reactions over organic-based photocatalysts.
1
1
1
1
1
1
2
4 W. Wang, T. An, G. Li, D. Xia, H. Zhao, J. C. Yu and
P. K. Wong, Appl. Catal., B, 2017, 217, 570.
5 Q. Deng, G. Ba, T. Huo, H. Li and W. Hou, Appl. Catal., A,
Author contributions
2020, 606, 117833.
6 H. Li, F. Li, Z. Wang, Y. Jiao, Y. Liu, P. Wang, X. Zhang,
X. Qin, Y. Dai and B. Huang, Appl. Catal., B, 2018, 229, 114.
7 V. R. Battula, S. Kumar, D. K. Chauhan, S. Samanta and
K. Kailasam, Appl. Catal., B, 2019, 244, 313.
8 Z. Teng, W. Cai, S. Liu, C. Wang, Q. Zhang, S. Chenliang and
T. Ohno, Appl. Catal., B, 2020, 271, 118917.
9 Y. Li, J. Ren, S. Ouyang, W. Hou, T. Petit, H. Song, H. Chen,
D. Philo, T. Kako and J. Ye, Appl. Catal., B, 2019, 259, 118027.
0 W. Che, W. Cheng, T. Yao, F. Tang, W. Liu, H. Su, Y. Huang,
Q. Liu, J. Liu, F. Hu, Z. Pan, Z. Sun and S. Wei, J. Am. Chem.
Soc., 2017, 139, 3021.
Shilian Yang: conceptualization, methodology, investigation,
data curation. Qian Wang: conceptualization, methodology,
data curation. Qiuchen Wang: methodology. Gen Li: formal
analysis. Tianxiang Zhao: supervision, investigation. Peng
Chen: conceptualization, supervision, writing-review & editing,
funding acquisition. Fei Liu: supervision, investigation, fund-
ing acquisition. Shuang-Feng Yin: supervision, investigation.
Conflicts of interest
There are no conicts to declare.
2
1 G. Jia, Y. Wang, X. Cui, Z. Yang, L. Liu, H. Zhang, Q. Wu,
L. Zheng and W. Zheng, Appl. Catal., B, 2019, 258, 117959.
2 P. Chen, H. Wang, H. Liu, Z. Ni, J. Li, Y. Zhou and F. Dong,
Appl. Catal., B, 2019, 242, 19.
2
Acknowledgements
This project was nancially supported by Scientic and Tech- 23 L. Kang, B. Wang, J. Zeng, Z. Cheng, J. Li, J. Xu, W. Gao and
nological Innovation Talents Team Project of Guizhou Province
K. Chen, Green Chem., 2020, 22, 504.
No. 20185607), One Hundred Person Project of Guizhou Prov- 24 Y. Yu, S. Wu, J. Gu, R. Liu, Z. Wang, H. Chen and F. Jiang, J.
(
ince (No. 20165655), Natural Science Project of Department of
Hazard. Mater., 2020, 384, 121247.
Education of Guizhou Province (No. 2017116), Innovation 25 H. Tan, X. Gu, P. Kong, Z. Lian, B. Li and Z. Zheng, Appl.
Group Project of Education Department in Guizhou Province
Catal., B, 2019, 242, 67.
No. 2021010) and Guizhou Provincial Science and Technology 26 Q. Han, Z. Cheng, J. Gao, Y. Zhao, Z. Zhang, L. Dai and L. Qu,
(
Foundation (No. 2021069). The authors would like to thank
Shiyanjia Lab for materials characterizations.
Adv. Funct. Mater., 2017, 27, 1606352.
J. Mater. Chem. A
This journal is © The Royal Society of Chemistry 2021