Communication
Wang et al.
Ag nanoparticles aggregation or agglomeration during the
reaction. Although, the results indicated that Ag nanoparti-
cles could catalyze the reaction, which was in coincidence
with our proposed mechanism.
Research Program of China (973 Program) (Grant No.
2010CB126101), National Natural Science Foundation of
China (Grant 20972052) and Shanghai Key Laboratory of
Catalysis Technology for Polyolefins (LCTP-201301) are
gratefully acknowledged.
CONCLUSIONS
In conclusion, we have developed a simple and effi-
cient method for the selective oxidation of benzylic and al-
lylic alcohols to corresponding aldehydes or ketones using
AgNO3 as catalyst, air as the sole oxidant, and in the pres-
ence of sodium carbonate. Given the highly selective na-
ture of this oxidation, we believe that this method might be
applicable to the chemoselective oxidation of alcohols in
multistep synthesis.
REFERENCES
1. (a) Muzart, J. Tetrahedron 2003, 59, 5789; (b) Mallat, T.;
Baiker, A. Chem. Rev. 2004, 104, 3037. (c) Sigman, M. S.;
Jensen, D. R. Acc. Chem. Res. 2006, 39, 221.
2. Cosner, C. C.; Cabrera, P. J.; Byrd, K. M.; Thomas, A. M. A.;
Helquist, P. Org. Lett. 2011, 13, 2071.
3. Karimi, B.; Esfahani, F. K. Chem. Commun. 2009, 35, 5555.
4. Kaneda, K.; Yamashita, T.; Matsushita, T.; Ebitani, K. J.
Org. Chem. 1998, 63, 1750.
5. Lee, M.; Chang, S. Tetrahedron Lett. 2000, 41, 7507.
6. (a) Keresszegi, C.; Mallat, T.; Baiker, A. New J. Chem. 2001,
25, 1163. (b) Hu, T. L.; Liu, X.; Lu, M.; Jiang, H. J. Chin.
Chem. Soc. 2010, 57, 28.
EXPERIMENTAL
General: All chemicals were of analytical grade and used
as received. To obtain the GC yield, the combined organic phase
was analyzed by a gas chromatograph (GC) equipped with a
flame ionization detector (FID) detector using dodecane as an in-
ternal standard (Angilent 7890A, HP-5, 30 m ´0.32 mm). The 1H
NMR spectra were recorded on a Bruker WP-400SY (400 MHz)
spectrometer with CDCl3 as the solvent and TMS as the internal
standard. GC mass spectra were recorded using a HP 6890 gas
chromatograph and HP 5973 mass selective detector. Analytical
thin-layer chromatography (TLC) was carried out on precoated
plates (silica gel 60 F254), and spots were visualized with ultravi-
olet (UV) light.
7. Hayashi, M.; Yamada, K.; Nakayama, S.; Hayashi, H.;
Yamazaki, S. Green Chem. 2000, 2, 257.
8. An, G.; Lim, M.; Chun, K. S.; Rhee, H. Synlett 2007, 95.
9. Harada, T.; Ikeda, S.; Hashimoto, F.; Sakata, T.; Ikeue, K.;
Torimoto, T.; Matsumura, M. Langmuir 2010, 26, 17720.
10. Steinhoff, B. A.; King, A. E.; Stahl, S. S. J. Org. Chem. 2006,
71, 1861.
11. Stahl, S. S. Science 2005, 309, 1824.
12. Hoelderich, W. F. Catal. Today 2000, 62, 115.
13. Jia, L.; Zhang, S.; Gu, F.; Ping, Y.; Guo, X.; Zhong, Z.; Su, F.
Microporous Mesoporous Mater. 2012, 149, 158.
14. Farook, A.; Elhag, A. A.; Lih, M. S. J. Porous Mater. 2008,
15, 433.
General procedure for the oxidation of alcohols: Alco-
hol substrate (1 mmol), toluene (2.5 mL), AgNO3 (2 mol%) and
Na2CO3 (2 mmol) were added to a 25 mL round-bottom flask,
which was then heated to reflux. After the reaction was finished
as monitored by thin layer chromatography (TLC), the reaction
was cooled to room temperature. The resulting reaction mixture
was filtered and the filter mass was washed three times with di-
chloromethane (2 mL ´ 3). The combined filtrate was concen-
trated via rotary evaporation under reduced pressure. The residue
was purified by flash column chromatography (Ethyl acetate: Pe-
troleum ether = 1:5 ~ 1:10) to afford pure product. The 1H-NMR,
13C-NMR and GC-MS data of representative compounds are
given in supplementary material. All synthesized compounds are
known and compared with literature.
15. Beier, M. J.; Hansen, T. W.; Grunwaldt, J. D. J. Catal. 2009,
266, 320.
16. Liotta, L. F.; Venezia, A. M.; Deganello, G.; Longo, A.;
Martorana, A.; Schay, Z.; Guczi, L. Catal. Today 2001, 66,
271.
17. Mitsudome, T.; Mikami, Y.; Funai, H.; Mizugaki, T.;
Jitsukawa, K.; Kaneda, K. Angew. Chem. Int. Ed. 2008, 47,
138.
18. Nagaraju, P.; Balaraju, M.; Reddy, K. M.; Prasad, P. S. S.;
Lingaiah, N. Catal. Commun. 2008, 9, 1389.
19. Shimizu, K.; Sugino, K.; Sawabe, K.; Satsuma, A. Chem.
Eur. J. 2009, 15, 2341.
20. Lu, W.; Gao, S.; Wang, J. J. Phys. Chem. C 2008, 112, 16792.
21. Kim, Y. W.; Lee, D. K.; Lee, K. J.; Min, B. R.; Kim, J. H. J.
Polym. Sci. Polym. Phys. 2007, 45, 1283.
22. Kaushik, V. K. J. Electron Spectrosc. Relat. Phenom. 1991,
56, 273.
ACKNOWLEDGEMENTS
23. Lee, C. L.; Syu, C. C. Electrochim. Acta 2011, 56, 8880.
Financial support for this work from National Basic
520
© 2014 The Chemical Society Located in Taipei & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
J. Chin. Chem. Soc. 2014, 61, 517-520