Catalytic Aerobic Oxidation of Alcohols in Water
COMMUNICATIONS
don, Adv. Synth. Catal. 2002, 344, 355; e) B. A. Steinhoff,
S. R. Fix, S. S. Stahl, J. Am. Chem. Soc. 2002, 124, 766;
f) B. A. Steinhoff, S. S. Stahl, Org. Lett. 2002, 4, 4179;
g) M. J. Schultz, C. C. Park, M. S. Sigman, Chem. Com-
mun. 2002, 3034; h) Y. Uozumi, R. Nakao, Angew.
Chem. Int. Ed. 2003, 42, 194; i) D. R. Jensen, M. J.
Schultz, J. A. Mueller, M. S. Sigman, Angew. Chem. Int.
Ed. 2003, 42, 3810.
Scheme 2. Our proposed mechanism.
[3] a) I. E. Marko, P. R. Giles, M. Tsukazaki, I. Chelle-Reg-
naut, C. J. Urch, S. M. Brown, J. Am. Chem. Soc. 1997,
119, 12661; b) G. Csjernyik, A. H. Ell, L. Fadini, B. Pu-
gin, J.-E. Backvall, J. Org. Chem. 2002, 67, 1657; c) K.
Yamaguchi, N. Mizuno, Angew. Chem. Int. Ed. 2002,
41, 4538; d) M. Musawir, P. N. Davey, G. Kelly, I. V. Koz-
hevnikov, Chem. Commun. 2003, 1414. e) B.-Z. Zhan,
M. A. White, T.-K. Sham, J. A. Pincock, R. J. Doucet,
K. V. R. Rao, K. N. Robertson, T. S. Cameron, J. Am.
Chem. Soc. 2003, 125, 2195.
ð2Þ
In conclusion, this work demonstrates that PhIO2/Br2/
NaNO2 is a very efficient catalytic system for selective
aerobic oxidation of alcohols in water. Extension of
this procedure to other substrates is underway in this
laboratory.
[4] For reviews of TEMPO-catalyzed alcohol oxidation, see:
a) A. E. J. de Nooy, A. C. Besemer, H. van Bekkum,
Synthesis 1996, 1153; b) W. Adam, C. R. Saha-Moller,
P. A. Ganeshpure, Chem. Rev. 2001, 101, 3499; c) R. A.
Sheldon, I. W. C. E. Arends, G.-J. ten Brink, A. Dijks-
man, Acc. Chem. Res. 2002, 35, 774.
Experimental Section
1H NMR spectra were recorded on a Varian Mercury Plus-300
spectrometer in CDCl3 with TMS as internal standard. Mass
spectra were determined on a Hewlett Packard 5988A spec-
trometer by direct inlet at 70 eV. GC/MS were determined us-
ing a Finnigan Trace 2000 GC/MS system. All products were
identifiedby NMR, MS and/or comparison with authentic sam-
ples. Iodoxybenzene was prepared according to the literature
procedure.[10] Alcohols and other reagents were all purchased
from commercial sources.
[5] For transition-metal-assisted TEMPO-catalyzed aerobic
alcohol oxidations, see: a) M. F. Semmelhack, C. R.
Schmid, D. A. Cortes, C. S. Chou, J. Am. Chem. Soc.
1984, 106, 3374; b) B. Betzemeier, M. Cavazzini, S. Quici,
P. Knochel, Tetrahedron Lett. 2000, 41, 4343; c) A. Cec-
chetto, F. Fontana, F. Minisci, F. Recupero, Tetrahedron
Lett. 2001, 42, 6651; d) A. Dijksman, A. Marino-Gonza-
lez, A. Mairata i Payeras, I. W. C. E. Arends, R. A. Shel-
don, J. Am. Chem. Soc. 2001, 123, 6826; e) R. Ben-Dan-
iel, P. Alsters, R. Neumann, J. Org. Chem. 2001, 66, 8650;
f) I. A. Ansari, R. Gree, Org. Lett. 2002, 4, 1507; g) P.
Gamez, I. W. C. E. Arends, J. Reedijk, R. A. Sheldon,
Chem. Commun. 2003, 2414; h) F. Minisci, F. Recupero,
G. F. Pedulli, M. Lucarini, J. Mol. Catal. A: Chem.
2003, 204, 63; i) F. Minisci, F. Recupero, A. Cecchetto,
C. Gambarotti, C. Punta, R. Faletti, R. Paganelli, G. F.
Pedulli, Eur. J. Org. Chem. 2004, 109.
In a typical experiment an alcohol (10 mmol) was mixed
with iodoxybenzene (0.1 mmol), Br2 (0.2 mmol) and NaNO2
(0.1 mmol) in water (40 mL). The mixture was heated to
558C to facilitate dissolution of iodoxybenzene and kept at
this temperature under vigorous stirring and a balloon pressure
of air until the reaction was completed as monitored by TLC.
Extraction of the reaction mixture with ether followed by re-
moval of the solvent under reduced pressure and column chro-
matographic separation gave the pure product which was iden-
tified by MS and 1H NMR. The conversion and selectivity were
determined by GC-MS.
[6] Catalytic aerobic alcohol oxidation in water by a water-
soluble palladium catalyst[2b, d] or an amphiphilic resin-
dispersion of a nanopalladium catalyst[2 h] has recently
been reported.
[7] For transition metal-free catalytic alcohol oxidation in
organic solvents, see: a) H.-R. Bjørsvik, L. Liguori, F.
Costantino, F. Minisci, Org. Process Res. Dev. 2002, 6,
197; b) R. A. Miller, R. S. Hoerrner, Org. Lett. 2003, 5,
285; c) R.-H. Liu, X.-M. Liang, C.-Y. Dong, X.-Q. Hu,
J. Am. Chem. Soc. 2004, 126, 4112; d) F. Minisci, O. Por-
ta, F. Recupero, C. Punta, C. Gambarotti, M. Pierini, L.
Galimberti, Synlett 2004, 2203.
[8] a) D. B. Dess, J. C. Martin, J. Org. Chem. 1983, 48, 4155;
b) D. B. Dess, J. C. Martin, J. Am. Chem. Soc. 1991, 113,
7277; c) M. Frigerio, M. Santagostino, Tetrahedron Lett.
1994, 35, 8019; d) M. Frigerio, M. Santagostino, S. Spu-
tore, G. Palmisano, J. Org. Chem. 1995, 60, 7272;
e) J. D. More, N. S. Finney, Org. Lett. 2002, 4, 3001;
Acknowledgements
We thank the National Natural Science Foundation of China
(grant No. 20372030) for financial support.
References and Notes
[1] a) I. E. Marko, P. R. Giles, M. Tsukazaki, S. M. Brown,
C. J. Urch, Science 1996, 274, 2044; b) I. E. Marko, P. R.
Giles, M. Tsukazaki, I. Chelle-Regnaut, A. Gautier,
S. M. Brown, C. J. Urch, J. Org. Chem. 1999, 64, 2433.
[2] a) K. P. Peterson, R. C. Larock, J. Org. Chem. 1998, 63,
3185; b) G.-J. ten Brink, I. W. C. E. Arends, R. A. Shel-
don, Science 2000, 287, 1636; c) S. S. Stahl, J. L. Thorman,
R. C. Nelson, M. A. Kozee, J. Am. Chem. Soc. 2001, 123,
7188; d) G.-J. ten Brink, I. W. C. E. Arends, R. A. Shel-
Adv. Synth. Catal. 2005, 347, 1333–1336
asc.wiley-vch.de
ꢁ 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
1335