10.1002/cctc.201900230
ChemCatChem
COMMUNICATION
J. T. Petroff II, A. H. Nguyen, A. J. Porter, F. D. Morales, M. P. Kennedy,
D. Weinstein, H. E. Nazer, R. D. McCulla, J. Photochem. Photobiol., A
2017, 335, 149-154.
Experimental Section
Under an inert atmosphere, the oven dried Schlenk tube was charged with
iron (II) chloride (10 mol%, 0.05 mmol, 6.4 mg) and zinc (1.5 eq., 0.75
mmol, 49 mg) followed by the addition of acetonitrile (0.5 mL) and 1, 4-
cyclohexadiene (3.0 eq., 1.5 mmol, 142 µL). After stirring for a minute at
room temperature, the alkyl halide (1.0 eq., 0.5 mmol) was added and
continued stirring at 50 oC. The completion of reaction was monitored
using TLC. After the reaction was complete, the mixture was filtered
through plug of Celite or silica, eluting with Et2O/CH2Cl2/EtOAc (based on
the volatility and polarity of the material) to remove metal salts and the
filtrate was concentrated under vacuum to obtain protodehalogenated
product. If needed the crude was subjected for further purification by flash
column chromatography (petroleum ether/ethyl acetate) to give the
corresponding product.
[5]
a) J. Y. Hwang, J. H. Baek, T. I. Shin, J. H. Shin, J. W. Oh, K. P. Kim, Y.
You, E. J. Kang, Org. Lett. 2016, 18, 4900-4903; b) S. H. Kyne, C.
Lévêque, S. Zheng, L. Fensterbank, A. Jutand, C. Ollivier, Tetrahedron
2016, 72, 7727-7737; c) S. H. Kyne, M. Clémancey, G. Blondin, E. Derat,
L. Fensterbank, A. Jutand, G. Lefèvre, C. Ollivier, Organometallics 2018,
37, 761-771; d) A. Cornia, U. Folli, S. Sbardellati, F. Taddei, J. Chem.
Soc., Perkin Trans. 2 1993, 1847-1853; e) M. A. Fakhfakh, X. Franck, R.
Hocquemiller, B. Figadère, J. Organomet. Chem. 2001, 624, 131-135; f)
U. Folli, F. Goldoni, D. Iarossi, S. Sbardellati, F. Taddei, J. Chem. Soc.,
Perkin Trans. 2 1995, 1017; g) Y. Hayashi, H. Shinokubo, K. Oshima,
Tetrahedron Lett. 1998, 39, 63-66; h) A. Ekomié, G. Lefèvre, L.
Fensterbank, E. Lacôte, M. Malacria, C. Ollivier, A. Jutand, Angew.
Chem., Int. Ed. 2012, 51, 6942-6946.
[6]
a) D. A. Everson, B. A. Jones, D. J. Weix, J. Am. Chem. Soc. 2012, 134,
6146-6159; b) W. Xue, H. Xu, Z. Liang, Q. Qian, H. Gong, Org. Lett. 2014,
16, 4984-4987; c) X. Wang, S. Wang, W. Xue, H. Gong, J. Am. Chem.
Soc. 2015, 137, 11562-11565; d) K. Huihui, J. Caputo, Z. Melchor, A.
Olivares, A. Spiewak, K. Johnson, T. DiBenedetto, S. Kim, L. Ackerman,
D. Weix, J. Am. Chem. Soc. 2016, 138, 5016-5019; e) T. Qin, L. Malins,
J. Edwards, R. Merchant, A. Novak, J. Zhong, R. Mills, M. Yan, C. Yuan,
M. Eastgate, P. Baran, Angew. Chem., Int. Ed. 2017, 56, 260-265; f) D.
A. Everson, R. Shrestha, D. J. Weix, J. Am. Chem. Soc. 2010, 132, 920-
921; g) L. K. G. Ackerman, M. M. Lovell, D. J. Weix, NATURE 2015, 524,
454-457; h) D. J. Weix, Acc. Chem. Res. 2015, 48, 1767-1775; i) E. C.
Hansen, D. J. Pedro, A. C. Wotal, N. J. Gower, J. D. Nelson, S. Caron,
D. J. Weix, Nature Chem. 2016, 8, 1126–1130; j) L. Huang, A. Olivares,
D. Weix, Angew. Chem., Int. Ed. 2017, 56, 11901-11905.
Acknowledgements
We thank the Science and Engineering Research Board, DST No:
EMR/2015/001103/OC
and
Ramanujan
Fellowship
SB/S2/RJN059/2015 for financial support. FTP, RP and VM
acknowledge IISER, Trivandrum for fellowship.
Keywords: iron; catalysis; protodehalogenation; reductive
cyclization; radicals; zinc
[1]
a) P. J. Dunn, Chem. Soc. Rev. 2012, 41, 1452-1461; b) P. Gallezot,
Chem. Soc. Rev. 2012, 41, 1538-1558; c) V. Polshettiwar, A.
Decottignies, C. Len, A. Fihri, ChemSusChem 2010, 3, 502-522; d) R.
A. Sheldon, Green Chem. 2014, 16, 950-963; e) D. S. Su, J. Zhang, B.
Frank, A. Thomas, X. Wang, J. Paraknowitsch, R. Schlögl,
ChemSusChem 2010, 3, 169-180; f) J. T. Dam, U. Hanefeld,
ChemSusChem 2011, 4, 1017-1034.
[7]
a) C. Cheung, F. Zhurkin, X. Hu, J. Am. Chem. Soc. 2015, 137, 4932-
4935; b) C. W. Cheung, X. Hu, Chem. Eur. J. 2015, 21, 18439-18444; c)
C. W. Cheung, X. Hu, Nature Communications 2016, 7, 12494.
R. Pilli, V. Balakrishnan, R. Chandrasekaran, R. Rasappan, Org. Biomol.
Chem. 2019, 17, 1749-1753.
[8]
[9]
a) A. Fürstner, A. Leitner, M. Méndez, H. Krause, J. Am. Chem. Soc.
2002, 124, 13856-13863; b) M. Nakamura, K. Matsuo, S. Ito, E.
Nakamura, J. Am. Chem. Soc. 2004, 126, 3686-3687; c) G. Cahiez, V.
Habiak, C. Duplais, A. Moyeux, Angew. Chem., Int. Ed. 2007, 46, 4364-
4366; d) A. Silberstein, S. Ramgren, N. Garg, Org. Lett. 2012, 14, 3796-
3799; e) T. Agrawal, S. P. Cook, Org. Lett. 2013, 15, 96-99; f) T. Iwasaki,
H. Takagawa, S. Singh, H. Kuniyasu, N. Kambe, J. Am. Chem. Soc. 2013,
135, 9604-9607; g) T. Mesganaw, N. K. Garg, Org. Process Res. Dev.
2013, 17, 29-39; h) T. Agrawal, S. Cook, Org. Lett. 2014, 16, 5080-5083;
i) D. Gärtner, A. Stein, S. Grupe, J. Arp, A. Jacobi von Wangelin, Angew.
Chem., Int. Ed. 2015, 54, 10545-10549; j) M. Jin, L. Adak, M. Nakamura,
J. Am. Chem. Soc. 2015, 137, 7128-7134; k) M. Tobisu, T. Takahira, N.
Chatani, Org. Lett. 2015, 17, 4352-4355; l) S. Kessler, J. Bäckvall,
Angew. Chem., Int. Ed. 2016, 55, 3734-3738; m) A. Rivera, R. Still, D.
Frantz, Angew. Chem., Int. Ed. 2016, 55, 6689-6693; n) M. Tobisu, T.
Takahira, T. Morioka, N. Chatani, J. Am. Chem. Soc. 2016, 138, 6711-
6714. O) M. Clémancey, T. Cantat, G. Blondin, J.-M. Latour, P. Dorlet
and G. Lefèvre, Inorg. Chem., 2017, 56, 3834-3848.
[2]
a) I. Bauer, H. J. Knölker, Chem. Rev. 2015, 115, 3170-3387; b) G. Cera,
L. Ackermann, Top. Curr. Chem. 2016, 374; c) P. J. Chirik, Acc. Chem.
Res. 2015, 48, 1687-1695; d) S. Fleischer, S. L. Zhou, S. Werkmeister,
K. Junge, M. Beller, Chem. Eur. J. 2013, 19, 4997-5003; e) A. Furstner,
R. Martin, Chem. Lett. 2005, 34, 624-629; f) A. Guerinot, J. Cossy, Top.
Curr. Chem. 2016, 374; g) B. A. F. Le Bailly, S. P. Thomas, Rsc
Advances 2011, 1, 1435-1445; h) R. Loska, C. M. R. Volla, P. Vogel, Adv.
Synth. Catal. 2008, 350, 2859-2864; i) K. Mori, J. Synth. Org. Chem. Jpn.
2010, 68, 75-76; j) A. Piontek, E. Bisz, M. Szostak, Angew. Chem., Int.
Ed. 2018, 57, 11116-11128; k) A. A. O. Sarhan, C. Bolm, Chem. Soc.
Rev. 2009, 38, 2730-2744; l) R. Shang, L. Ilies, E. Nakamura, Chem.
Rev. 2017, 117, 9086-9139; m) Y. Sunada, H. Nagashima, J. Synth. Org.
Chem. Jpn. 2017, 75, 1253-1263; n) C. Bolm, J. Legros, J. Le Paih, L.
Zani, Chem. Rev. 2004, 104, 6217-6254; o) C. Cassani, G. Bergonzini,
C.-J. Wallentin, ACS Catal. 2016, 6, 1640-1648; p) A. Fürstner, Angew.
Chem., Int. Ed. 2009, 48, 1364-1367; q) K. Gopalaiah, Chem. Rev. 2013,
113, 3248-3296; r) J. Legros, B. Figadère, Nat. Prod. Rep. 2015, 32,
1541-1555; s) T. L. Mako, J. A. Byers, Inorg. Chem. Front. 2016, 3, 766-
790.
[10] It is important to note that the traces of FeCl2 (from an unclean stir bar)
can catalyze the reaction.
[11] No silica column purification was required when CHD was used as the
source of hydrogen atom, however, a silica column purification was
necessary when we use catechol as the source of hydrogen atom.
[12] see SI for more details
[3]
[4]
a) K. C. Majumdar, G. V. Karunakar, B. Sinha, Synthesis 2012, 44, 2475-
2505; b) H. Ishibashi, T. Sato, M. Ikeda, Synthesis 2002, 6, 695-713; c)
S. Z. Zard, Angew. Chem., Int. Ed. 1997, 36, 672-684.
a) I. Ghosh, T. Ghosh, J. Bardagi, B. König, Science 2014, 346, 725-728;
b) X. Li, Z. Hao, F. Zhang, H. Li, ACS Applied Materials & Interfaces 2016,
8, 12141-12148; c) Q. Liu, B. Han, W. Zhang, L. Yang, Z.-L. Liu, W. Yu,
Synlett 2005, 14, 2248-2250; d) T. Maji, A. Karmakar, O. Reiser, J. Org.
Chem. 2011, 76, 736-739; e) J. M. R. Narayanam, J. W. Tucker, C. R. J.
Stephenson, J. Am. Chem. Soc. 2009, 131, 8756-8757; f) J. Nguyen, E.
D'Amato, J. Narayanam, C. Stephenson, Nat Chem 2012, 4, 854-859; g)
[13] When we noticed the formation of homo-coupled or unindentified
byproducts, we employed catechol instead of 1,4-cyclohexadiene.
[14] see page number S13 in SI for more details
[15] a) M. Pezechk, A. P. Brunetiere, J. Y. Lallemand, Tetrahedron Lett. 1986,
27, 3715-3718; b) C. Hackmann, H. J. Schäfer, Tetrahedron 1993, 49,
4559-4574; c) A. Vaupel, P. Knochel, J. Org. Chem. 1996, 61, 5743-
5753; d) A. L. J. Beckwith, D. M. Page, Tetrahedron 1999, 55, 3245-
This article is protected by copyright. All rights reserved.