NJC
Paper
7 S. Kobayashi and S. Nagayama, J. Am. Chem. Soc., 1998, 120,
2985–2986.
8 K. M. Parida, S. Mallick and G. C. Pradhan, J. Mol. Catal. A:
Chem., 2009, 297, 93–100.
9 M. Meyyappan and M. K. Sunkara, Inorganic Nanowires:
Applications, Properties, and Characterization, CRC Press,
2018.
10 G. Liu, J. Liu, W. Li, C. Liu, F. Wang, J. He and S. L. Suib,
Appl. Catal., A, 2017, 535, 77–84.
Scheme 1 Proposed reaction mechanism for the acetylation of anisole
on Cu–Zn composite oxide catalysts.
11 K. R. Reddy, D. Venkanna, M. L. Kantam, S. K. Bhargava and
P. Srinivasu, Ind. Eng. Chem. Res., 2015, 54, 7005–7013.
12 A. R. Hajipour, A. Zarei, L. Khazdooz and A. E. Ruoho, Syst.
Commun., 2009, 39, 2702–2722.
13 B. Li and Y. Wang, Superlattices Microstruct., 2010, 47,
615–623.
causing the carbon atom to attach to the acyl group, lose
protons and reform the CQC bond to form an aromatic ring
system, whereupon the target product is obtained and hydro-
gen chloride gas is released.
14 S. Muthukumaran, J. Mater. Sci.: Mater. Electron., 2013, 24,
4050–4059.
Conclusions
15 W. Luo, L. Sun, Y. Yang, Y. Q. Chen, Z. Zhou, J. H. Liu and
F. Wang, Catal. Sci. Technol., 2018, 8, 6468–6477.
16 J. Xiao, D. S. Mao, X. M. Guo and J. Jun, Energy Technol.,
2015, 3, 32–39.
17 G. Liu, L. Sun, J. Liu, F. Wang and C. J. Guild, Mol. Catal.,
2017, 440, 148–157.
18 J. Chen and W. Z. Shen, Appl. Phys. Lett., 2003, 83, 2154–2156.
19 H. F. Goldstein, D. Kim, Y. Y. Peter, L. C. Bourne,
J. P. Chaminade and L. Nganga, Phys. Rev. B: Condens.
Matter Mater. Phys., 1990, 41, 7192.
20 V. K. Tripathi and R. Nagarajan, J. Am. Ceram. Soc., 2016, 99,
814–818.
In summary, a series of composite metal oxides with different
Cu/Zn molar ratios were prepared by a co-precipitation method
and used in an anisole acetylation reaction under solvent-free
conditions in which Cu3ZnOx has the highest activity and
reusability. More striking is that the outstanding catalytic
2+
performance originated from the synergistic effect of CuO
and dispersed ZnO, where dispersion of ZnO within the CuO
crystalline phase promotes the dispersion of acidic sites on the
surface of the catalysts and the formation of CuO2+, which
enhances the Lewis acidity of the catalysts and accelerates the
reaction. We believe that these composite metal oxides will
have a wide range of applications in other acid-catalyzed
reactions, and work is ongoing in our group.
21 K. B. Modi, P. Y. Raval, S. J. Shah, C. R. Kathad, S. V. Dulera,
M. V. Popat and V. K. Lakhani, Inorg. Chem., 2015, 54,
1543–1555.
Conflicts of interest
22 Y. Qu, H. Yang, N. Yang, Y. Fan, H. Zhu and G. Zou, Mater.
Lett., 2006, 60, 3548–3552.
23 X. Q. Wei, B. Y. Man, M. Liu, C. S. Xue, H. Z. Zhuang and
C. Yang, Physica B, 2007, 388, 145–152.
There are no conflicts to declare.
24 S. A. Hosseini, M. C. Alvarez-Galvan, J. L. G. Fierro, A. Niaei
and D. Salari, Ceram. Int., 2013, 39, 9253–9261.
25 D. Naumann, D. Helm and H. Labischinski, Nature, 1991,
351, 81–82.
26 Q. Yan, S. Chen, C. Zhang, Q. Wang and B. Louis, Appl.
Catal., B, 2018, 238, 236–247.
Acknowledgements
This work is financially supported by the National Natural
Science Foundation of China (21703101, 21303085), and the
Priority Academic Program Development of Jiangsu Higher
Education Institutions.
27 A. E. Jimenez-Gonzalez, J. A. S. Urueta and R. Suarez-Parra,
J. Cryst. Growth, 1998, 192, 430–438.
28 R. Saravanan, S. Karthikeyan, V. K. Gupta, G. Sekaran,
V. Narayanan and A. J. M. S. Stephen, Mater. Sci. Eng., C,
2013, 33, 91–98.
Notes and references
1 G. Li, H. Li, H. Zhao, T. Cai, Y. Li and S. Guan, Chem. Res.
Chin. Univ., 2018, 34, 877–881.
29 D. M. Fernandes, R. Silva, A. A. W. Hechenleitner,
E. Radovanovic, M. C. Melo and E. G. Dineda, Mater. Chem.
Phys., 2009, 115, 110–115.
30 M. N. Islam, T. B. Ghosh, K. L. Chopra and H. N. Acharya,
Thin Solid Films, 1996, 280, 20–25.
2 X. Jin, A. Wang, H. Cao, S. Zhang, L. Wang and X. Zheng,
Res. Chem. Intermed., 2018, 44, 5521–5530.
3 H. Chen, Z. Gu, H. An, C. Chen, J. Chen, R. Cui and Z. Chen,
Sci. China: Chem., 2018, 61, 1503–1552.
4 N. N. Duong, B. Wang, T. Sooknoi, S. P. Crossley and
D. E. Resasco, ChemSusChem, 2017, 10, 2823–2832.
5 A. Corma and H. Garcia, Chem. Rev., 2013, 103, 4307–4366.
6 G. D. Yadav and M. M. Rahuman, Org. Process Res. Dev.,
2002, 6, 706–713.
´
31 G. Picasso, M. Gutierrez, M. P. Pina and J. Herguido, Chem.
Eng. J., 2007, 126, 119–130.
¨
32 G. Ertl, R. Hierl, H. Knozinger, N. Thiele and H. P. Urbach,
Appl. Surf. Sci., 1980, 5, 49–64.
10498 | New J. Chem., 2020, 44, 10492--10499
This journal is ©The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020