Page 5 of 7
PleaseC dh oe mn oi ct a al dS cj ui es nt cme argins
Chem. Sci.
ARTICLE
Beilstein J. Org. Chem., 2018, 14, 3025-30D4O6I.: 10.1039/D0SC02131H
6 B. M. Hockin, C. F. Li, N. Robertson and E. Zysman-Colman, Catal.
Sci. Technol., 2019, 9, 889-915.
coupled with 99% yield under slightly modified conditions (10)
see section B in SI). Heterocyclic aryl bromides were also
coupled successfully in good yields with a reaction time of 40
1
1
1
1
2
2
2
(
7 W. B. Liu, J. B. Li, P. Querard and C. J. Li, J. Am. Chem. Soc., 2019,
hours (11, 12).
1
41, 6755-6764.
8 C. H. Lim, M. Kudisch, B. Liu and G. M. Miyake, J. Am. Chem. Soc.,
018, 140, 7667-7673.
9 J. He, C. Y. Chen, G. C. Fu and J. C. Peters, ACS Catal., 2018, 8,
1741-11748.
Conclusions
2
We have demonstrated that surface-modified carbon nitride,
1
NCNCN
x
, with its extended absorption in the visible region, can
0 S. Ruccolo, Y. Qin, C. Schnedermann and D. G. Nocera, J. Am.
Chem. Soc., 2018, 140, 14926-14937.
1 L. K. G. Ackerman, J. I. M. Alvarado and A. G. Doyle, J. Am. Chem.
Soc., 2018, 140, 14059-14063.
2 B. J. Shields, B. Kudisch, G. D. Scholes and A. G. Doyle, J. Am.
Chem. Soc., 2018, 140, 3035-3039.
directly utilize broadband sunlight to drive nickel-catalysed aryl
amination and etherification. In contrast to UV- and blue-light
driven photoredox processes, the method disclosed herein
enables highly efficient bond formation at high energy intensity
(EI) while avoiding competing photoexcitations of other
chemical species frequently encountered in dual photocatalytic 23 S. I. Ting, S. Garakyaraghi, C. M. Taliaferro, B. J. Shields, G. D.
processes. Owing to its increased efficiency in solar light
Scholes, F. N. Castellano and A. G. Doyle, J. Am. Chem. Soc., 2020,
42, 5800-5810.
24 F. G. Calvo-Flores, ChemSusChem, 2009, 2, 905-919.
1
absorption, metal-free nature, facile separation, ready
NCN
recyclability, and straightforward synthesis,
x
CN is an
2
2
2
5 F. Roschangar, R. A. Sheldon and C. H. Senanayake, Green Chem.,
015, 17, 752-768.
6 C. Jimenez-Gonzalez, D. J. C. Constable and C. S. Ponder, Chem.
Soc. Rev., 2012, 41, 1485-1498.
7 R. P. Schwarzenbach, B. I. Escher, K. Fenner, T. B. Hofstetter, C. A.
Johnson, U. von Gunten and B. Wehrli, Science, 2006, 313, 1072-
attractive heterogeneous photocatalyst for environmentally
benign and sustainable solar synthesis.
2
Acknowledgements
We want to thank Prof. Christine Caputo at University of New
Hampshire for confirming the UV-vis diffuse reflectance
spectrum. This work is supported by the National Science
Foundation under grant CHE-1855531.
1
077.
2
8 X. M. Liu, Q. J. Song, Y. Tang, W. L. Li, J. M. Xu, J. J. Wu, F. Wang
and P. C. Brookes, Sci. Total Environ., 2013, 463, 530-540.
9 D. G. J. Larsson, Philos. Trans. R. Soc. B, 2014, 369, 20130571.
0 D. G. Nocera, Inorg. Chem., 2009, 48, 10001-10017.
2
3
Conflicts of interest
There are no conflicts to declare.
31 D. G. Nocera, Acc. Chem. Res., 2017, 50, 616-619.
3
3
2 M. Oelgemoller, Chem. Rev., 2016, 116, 9664-9682.
3 W. Y. Teoh, J. A. Scott and R. Amal, J. Phys. Chem. Lett., 2012, 3,
6
29-639.
4 X. J. Lang, X. D. Chen and J. C. Zhao, Chem. Soc. Rev., 2014, 43,
73-486.
5 X. C. Wang, S. Blechert and M. Antonietti, ACS Catal., 2012, 2,
596-1606.
Notes and references
3
3
3
4
1
J. M. R. Narayanam and C. R. J. Stephenson, Chem. Soc. Rev.,
011, 40, 102-113.
J. Xuan and W. J. Xiao, Angew. Chem. Int. Ed., 2012, 51, 6828-
838.
2
1
2
6 X. Li, J. G. Yu, J. X. Low, Y. P. Fang, J. Xiao and X. B. Chen, J. Mater.
Chem. A, 2015, 3, 2485-2534.
7 Y. Q. Qu and X. F. Duan, Chem. Soc. Rev., 2013, 42, 2568-2580.
8 J. A. Terrett, J. D. Cuthbertson, V. W. Shurtleff and D. W. C.
MacMillan, Nature, 2015, 524, 330-334.
9 E. B. Corcoran, M. T. Pirnot, S. S. Lin, S. D. Dreher, D. A. DiRocco,
I. W. Davies, S. L. Buchwald and D. W. C. MacMillan, Science,
2
0 E. R. Welin, C. Le, D. M. Arias-Rotondo, J. K. McCusker and D. W.
C. MacMillan, Science, 2017, 355, 380-384.
1 M. S. Oderinde, M. Frenette, D. W. Robbins, B. Aquila and J. W.
Johannes, J. Am. Chem. Soc., 2016, 138, 1760-1763.
2 Q. M. Kainz, C. D. Matier, A. Bartoszewicz, S. L. Zultanski, J. C.
Peters and G. C. Fu, Science, 2016, 351, 681-684.
3 C. Cavedon, A. Madani, P. H. Seeberger and B. Pieber, Org. Lett.,
6
3
4
D. M. Schultz and T. P. Yoon, Science, 2014, 343, 1239176.
M. H. Shaw, J. Twilton and D. W. C. MacMillan, J. Org. Chem.,
3
3
2
016, 81, 6898-6926.
N. A. Romero and D. A. Nicewicz, Chem. Rev., 2016, 116, 10075-
0166.
E. C. Gentry and R. R. Knowles, Acc. Chem. Res., 2016, 49, 1546-
556.
C. K. Prier, D. A. Rankic and D. W. C. MacMillan, Chem. Rev., 2013,
13, 5322-5363.
M. D. Levin, S. Kim and F. D. Toste, ACS Cent. Sci., 2016, 2, 293-
01.
5
6
7
8
9
1
1
3
1
016, 353, 279-283.
1
4
4
4
4
4
4
4
1
3
L. Marzo, S. K. Pagire, O. Reiser and B. Konig, Angew. Chem. Int.
Ed., 2018, 57, 10034-10072.
0 A. Hossain, A. Bhattacharyya and O. Reiser, Science, 2019, 364,
eaav9713.
1 M. N. Hopkinson, B. Sahoo, J. L. Li and F. Glorius, Chem. Eur. J.,
2
019, 21, 5331-5334.
4 I. Ghosh, J. Khamrai, A. Savateev, N. Shlapakov, M. Antonietti and
B. Konig, Science, 2019, 365, 360-366.
5 Y. Y. Liu, D. Liang, L. Q. Lu and W. J. Xiao, Chem. Commun., 2019,
2
014, 20, 3874-3886.
1
1
2 J. K. McCusker, Science, 2019, 363, 484-488.
3 K. Teegardin, J. I. Day, J. Chan and J. Weaver, Org. Process Res.
Dev., 2016, 20, 1156-1163.
5
5, 4853-4856.
6 B. Pieber, J. A. Malik, C. Cavedon, S. Gisbertz, A. Savateev, D. Cruz,
T. Heil, G. G. Zhang and P. H. Seeberger, Angew. Chem. Int. Ed.,
2
1
4 C. B. Kelly, N. R. Patel, D. N. Primer, M. Jouffroy, J. C. Tellis and G.
A. Molander, Nat. Protoc., 2017, 12, 472-492.
019, 58, 9575-9580.
This journal is © The Royal Society of Chemistry 2020
Chem. Sci., 2020, 11, 1-5 | 5
Please do not adjust margins