Table 2 Reaction rate constant of the esterification of acetic acid with alcohols catalysed by various catalystsa
Rate constant (k1/ꢂ10ꢀ4 L molꢀ1 sꢀ1
2-Propanol
)
Catalystb
Methanol
Ethanol
1-Butanol
1-Decanol
PVS-grafted PSt
Amberlysts 15
Nafions SAC-13
PVS
VSA
MSA
BSA
Sulfuric acid
No catalyst
60
14
4.6
—
—
—
—
—
11
2.2
0.56
0.18
—
—
—
—
—
0.068
7.1
2.6
1.6
9.4
16
13
12
17
4.0
2.0
1.3
—
—
—
—
—
0.30
5.6
2.0
—
18
16
13
18
0.44
0.64
0.33
a
Reaction conditions: acetic acid = 0.1 mol, alcohols = 0.1 mol, homogeneous acid catalysts = 0.45 mmol, heterogeneous acid catalysts = 0.1 g,
b
temperature = 65 1C. PVS: poly(vinylsulfonic acid), VSA: vinylsulfonic acid, MSA: methanesulfonic acid, BSA: benzenesulfonic acid.
for the PVS-grafted PSt. No by-product formation, i.e. ether
formation, or desorption of PVS from the carrier surface was
seen, since the NMR spectrum of the reaction sample did not
reveal any components other than the reactants and the ester
product.
loss of activity, and pollution risks like reactor corrosion are
kept to a minimum.
This work was partially supported by the Global COE
program ‘‘Practical Chemical Wisdom’’ at Waseda University
from MEXT, Japan, and the Australian Research Council.
Reusability of a heterogeneous catalyst is key for industrial
production. To examine the reusability of the catalyst, the
PVS-grafted PSt was filtered from the reaction mixture and
reused in a new reaction cycle without any treatment. The
progress of the reaction was monitored by taking small
aliquots of samples at different time intervals. Fig. 2 shows
that every recycled sample demonstrated almost identical
conversion to the ester as the fresh catalyst sample, i.e. about
55% of ethyl acetate, indicating that there is no significant
effect on the activity when the PVS-grafted PSt was reused. It
apparently stays chemically stable and active in the presence of
water and acetic acid. Furthermore, the corrosion of stainless
steel was hardly observed by XPS in the anticorrosion test of
the PVS-grafted PSt compared with the case of sulfuric acid.
In addition, the catalytic performance of the PVS-grafted PSt
was also determined for Friedel–Crafts acylation reaction and
condensation reaction, and it showed high catalytic activity. In
particular, the synthesis of 2,2-bis(5-methylfuryl)propane
using the PVS-grafted PSt highlighted the advantages of this
new solid phase catalyst in terms of conversion compared to
other catalysts.
Notes and references
1 H. Hishide, T. Okayasu and S. Abe, Jpn. Pat. Appl. 2 008 121 421, 2008.
2 (a) J. Otera, Esterification Methods, Reactions and applications,
Wiley VCH Verlag Gmbh and KgaA, Weinheim, Germany, 2003;
(b) S. Cotton, Educ. Chem., 1997, 34, 62.
3 (a) A. Mitsutani, Catal. Today, 2002, 73, 57; (b) M. Hino and
K. Arata, Appl. Catal., 1985, 18, 401; (c) E. L. Eliel, M. T. Fisk and
T. Prosser, Org. Synth., 1963, 4, 169; (d) J. Munch-Peterson, Org.
Synth., 1973, 5, 762.
4 (a) A. K. Kumar and T. K. Chottopadhyay, Tetrahedron Lett.,
1987, 28, 3713; (b) R. Nakao, K. Oka and T. Fukumoto, Bull.
Chem. Soc. Jpn., 1981, 54, 1267; (c) R. Koster, B. van der Linden,
E. Poels and A. Blick, J. Catal., 2001, 204, 333.
5 (a) F. F. Bamoharram, M. M. Heravi, M. Roshani, M. Jahangir
and A. Gharib, J. Mol. Catal. A: Chem., 2007, 271, 126;
(b) S. Shanmugam, B. Viswanathan and T. K. Varadarajan,
J. Mol. Catal. A: Chem., 2004, 223, 143.
6 (a) J. C. Juan, J. Zhang and M. A. Yarmo, Appl. Catal., A, 2008,
347, 133; (b) T. A. Peters, N. E. Benes, A. Holmen and J. T. F.
Keurentjes, Appl. Catal., A, 2006, 297, 182; (c) A. E. R. S. Khder,
Appl. Catal., A, 2008, 343, 109; (d) B. M. Reddy, P. M. Sreekanth
and V. R. Reddy, J. Mol. Catal. A: Chem., 2005, 225, 71;
(e) S. R. Kirumakki, N. Nagaraju, K. V. V. S. B. S. R. Murthy
and S. Narayanan, Appl. Catal., A, 2002, 226, 175; (f) G. D. Yadav
and P. H. Mehta, Ind. Eng. Chem. Res., 1994, 33, 2198.
7 (a) I. K. Mbaraka and B. H. Shanks, J. Catal., 2006, 244, 78;
(b) M. Alvaro, A. Corma, D. Das, V. Fornes and H. Garcıa, Chem.
Commun., 2004, 956; (c) A. Bugrayev, N. Al-Haq, R. A. Okopie,
A. Qazi, M. Suggate, A. C. Sullivan and J. R. H. Wilson, J. Mol.
Catal. A: Chem., 2008, 280, 96; (d) K. Nakajima, M. Hara and
S. Hayashi, J. Am. Ceram. Soc., 2007, 90, 3725; (e) J. A. Melero,
G. D. Stucky, R. Grieken and G. Morales, J. Mater. Chem., 2002,
12, 1664; (f) A. Karam, Y. Gu, F. Jerome, J. Douliez and
J. Barrault, Chem. Commun., 2007, 2222; (g) E. Canno-Serrano,
J. M. Campos-Martin and J. L. G. Fierro, Chem. Commun., 2003,
246.
In conclusion, the PVS-grafted PSt is one of the ultimate
solid acid materials that has both high acid densities and
intrinsic strong acid strength derived from VSA in a synergistic
manner. The PVS-grafted PSt showed very high catalytic
activity as a heterogeneous acid catalyst for esterification.
The catalyst can be reused repeatedly without any observed
8 J. Kobayashi, A. Kikuchi, K. Sakai and T. Okano, Anal. Chem.,
2001, 73, 2027.
9 (a) B. Zhao and L. Zhu, J. Am. Chem. Soc., 2006, 128, 4574;
(b) M. Ejaz, K. Ohno, Y. Tsuji and T. Fukuda, Macromolecules,
2000, 33, 2870.
10 (a) P. Batamack and J. Fraissard, Catal. Lett., 1995, 35, 135;
(b) G. Ye, N. Janzen and G. R. Goward, Macromolecules, 2006,
39, 3283; (c) M. A. Harmer, Q. Sun, A. J. Vega, W. E. Farneth,
A. Heidekum and W. F. Hoelderich, Green Chem., 2000, 1, 7.
11 (a) C. Heiner-Wirguim, J. Membr. Sci., 1996, 120, 1;
(b) P. Costamagna and S. Srinivasan, J. Power Sources, 2001,
102, 242.
Fig. 2 Recycling of the PVS-grafted PSt in the synthesis of ethyl
acetate (catalyst = 0.1 g, temperature = 65 1C, reaction time = 3 h).
ꢁc
This journal is The Royal Society of Chemistry 2009
4710 | Chem. Commun., 2009, 4708–4710