Method A, mainly used for the aliphatic nitriles, involved
filtration through a Celite pad to remove the biomass followed
by basifying the aqueous solution to pH 11 with aqueous
NaOH (2 ). Extraction with diethyl ether or ethyl acetate
(2 × 30 cm3) gave, after drying over magnesium sulfate and con-
centration, the amide and unreacted nitrile. Separation of
nitrile and amide was effected by flash chromatography. The
aqueous solution was then acidified using concentrated HCl to
pH 2 and extracted with diethyl ether or ethyl acetate (2 × 30
cm3). The acid was obtained after the solvent had been removed
in vacuo.
33–35 ЊC (lit.,65 34–35 ЊC); 52c, mp 176 ЊC (lit.,66 175–176.5 ЊC);
53c, oil (lit.,67 bp 163–165 ЊC); 54c, oil (lit.,68 bp 97–98 ЊC/20
mmHg); 55c, mp 51–52 ЊC (lit.,69 52 ЊC); 56c, mp 46.5 ЊC (lit.,60
46.4–46.8 ЊC); 57c, mp 77–78 ЊC (lit.,60 76.7–76.9 ЊC); 58c, mp
103–105 ЊC (lit.,70 105 ЊC); 59c, mp 151–153 ЊC (lit.,70 152 ЊC);
60c, mp 93.5–95 ЊC (lit.,71 94 ЊC); 61c, mp 84–86 ЊC (lit.,72
82 ЊC); 62c, mp 132–132.5 ЊC (lit.,47 132 ЊC); 63c, mp 143–
144 ЊC (lit.,47 144 ЊC).
Acknowledgements
Method B was used mainly for aromatic and heterocyclic
nitriles. The reaction mixture was adjusted to pH 11 with aque-
ous NaOH (2 ) and was extracted continuously with dichloro-
methane for 12–24 h. The aqueous phase was acidified with
concentrated HClto pH 2and wasextracted again with dichloro-
methane for another 12–24 h. The amide and/or nitrile and
acid were obtained respectively from the two extractions. For
pyridinecarboxylic acids, the pH was adjusted to their iso-
electric point (isonicotinic acid 3.2; nicotinic acid 3.4; picolinic
acid 3.6) and extracted continuously with dichloromethane.
Method A was used for the isolation of aminobenzoic acids
and after addition of glacial acetic acid and concentration of
the solution in vacuo, anthranilic acid was obtained as a crystal-
line product. 3- And 4-aminobenzoic acids were obtained when
the aqueous solution was concentrated to dryness and the resi-
due was extracted with ethanol.
We thank the BBSRC for a post-doctoral grant (M.-X. W.) and
generous funding that made this work possible.
References
1 Part of this work has appeared as a preliminary communication;
O. Meth-Cohn and M.-X. Wang, Tetrahedron Lett., 1995, 36, 9561.
2 For recent reviews of biotransformations, see (a) H. G. Davies,
R. H. Green, D. R. Kelly and S. M. Roberts, Biotransformations in
Preparative Organic Chemistry, Academic Press, London, 1989; (b)
K. Faber, Biotransformations in Organic Chemistry, Springer Verlag,
1992; (c) Preparative Biotransformations: Whole Cell and Isolated
Enzymes in Organic Chemistry, ed. S. M. Roberts, Wiley, New York,
1993; (d) C.-H. Wong and G. M. Whitesides, Enzymes in Synthetic
Organic Chemistry, Pergamon, 1994; (e) Enzyme Catalysts in
Organic Chemistry, ed. K. Drauz and H. Waldmann, VCH,
Weinheim, 1995.
3 For reviews of nitrile biodegradations, see Cyanide Compounds in
Biology (Ciba Foundation Symposium 140), ed. D. Evgred and
S. Harnett, Wiley, Chichester, 1988; J.-C. Jallageas, A. Arnaud and
P. Galzy, Adv. Biochem. Eng., 1980, 12, 1; J. L. Legras, G. Chuzel,
A. Arnaud and P. Galzy, World J. Microbiol. Biotechnol., 1990, 6, 83.
4 (a) D. B. Harper, Biochem. Soc. Trans., 1976, 4, 502; (b) D. B.
Harper, Biochem. J., 1977, 165, 309; (c) M. Kobayashi and
S. Shimizu, FEMS Microbiol. Lett., 1994, 120, 217.
5 (a) Y. Asano, Y. Tani and H. Yamada, Agric. Biol. Chem., 1980, 44,
2251; (b) Y. Asano, K. Fujishiro, Y. Tani and H. Yamada, Agric.
Biol. Chem., 1982, 46, 1165; (c) Y. Asano, M. Tachibana, Y. Tani
and H. Yamada, Agric. Biol. Chem., 1982, 46, 1175.
6 M. L. Gradley and C. J. Knowles, Biotechnol. Lett., 1994, 16, 41.
7 (a) A. Arnaud, P. Galzy and J.-C. Jallageas, Agric. Biol. Chem., 1977,
41, 2183; (b) T. Nagasawa, K. Ryunoand and H. Yamada, Biochem.
Biophys. Res. Commun., 1986, 139, 1305; (c) Y. Sugiura,
J. Kuwahara, T. Nagasawa and H. Yamada, J. Am. Chem. Soc.,
1987, 109, 5848; (d) J.-F. Mayaux, E. Cerbelaud, F. Soubrier,
D. Faucher and D. Petre, J. Bacteriol., 1990, 172, 6764.
All products were characterised by their spectral data and
comparison of the melting points with the known compounds,
which are listed below, or by full characterisation.
1,5-Dimethyl-1H-pyrrole-2-carboxamide 36b
Colourless crystalline solid, mp 152.5 ЊC; νmax/cmϪ1 3370, 3185,
1637 and 1612; δH 6.54 (1 H, d, J 3.8), 5.89 (1 H, dd, J 3.8 and
0.8), 5.44 (2 H, br s, NH2), 3.85 (3 H, Me) and 2.24 (3 H, Me);
m/z (El) 138 (Mϩ, 100%), 122 (76) and 94 (26) (Found: C,
60.75; H, 7.24; N, 20.28. C6H10N2O requires C, 60.83; H,
7.30; N, 20.28%).
Melting points
1c, mp 122 ЊC (lit.,26 120–122 ЊC); 2c, mp 181 ЊC (lit.,27 181 ЊC);
3c, mp 184 ЊC (lit.,28 185 ЊC); 4c, mp 159 ЊC (lit.,29 158–160 ЊC);
5c, mp 243 ЊC (lit.,30 240 ЊC); 6c, mp 185 ЊC (lit.,31 182 ЊC); 7c,
mp 241.5 ЊC (lit.,27 241 ЊC); 8c, 208 ЊC (lit.,32 207.5–209.5 ЊC);
9c, mp 230 ЊC (lit.,33 218–230 ЊC); 10c, mp 213–214 ЊC (lit.,29
212–213 ЊC); 11b, mp 183–183.5 ЊC (lit.,34 175–179 ЊC); 11c, mp
186–187 ЊC (lit.,35 184 ЊC); 12c, mp 140–141 ЊC (lit.,36 139–
140 ЊC); 13c, mp 110 ЊC (lit.,27 110.5 ЊC); 14c, mp 200.8 ЊC
(lit.,29 197–201 ЊC); 15c, mp 174 ЊC (lit.,35 173 ЊC); 16b, mp
143 ЊC (lit.,37 144–145 ЊC); 16c, mp 105.5 ЊC (lit.,38 104.8–
105.4 ЊC); 17b, mp 130 ЊC (lit.,39 130–131 ЊC); 19b, mp 142–
143 ЊC (lit.,40 142–143.5 ЊC); 19c, mp 141–143 ЊC (lit.,31 142 ЊC);
20b, mp 177–178 ЊC (lit.,41 174–175 ЊC); 20c, mp 146–147 ЊC
(lit.,42 148 ЊC); 21b, mp 142 ЊC (lit.,40 136.5–138.5 ЊC); 21c, mp
160–162 ЊC (lit.,29 156–158 ЊC); 22b, mp 111.5–112 ЊC (lit.,43
108.5–111 ЊC); 22c, mp 147.5–148 ЊC (lit.,35 144–145 ЊC); 23b,
mp 146.5–147 ЊC (lit.,44 144.5–145.5 ЊC); 23c, mp 156.5–157 ЊC
(lit.,44 159–160 ЊC); 24b, mp 200–201 ЊC (lit.,45 202 ЊC); 27c, mp
230.5–232 ЊC (lit.,46 229–230 ЊC); 28c, mp 162–163 ЊC (lit.,47
162 ЊC); 29c, mp 187 ЊC (lit.,47 187.5 ЊC); 34b, mp 143–144 ЊC
(lit.,48 141–142 ЊC); 34c, mp 134 ЊC (lit.,49 132–133 ЊC); 35b, mp
183–184 ЊC (lit.,50 179–180 ЊC); 35c, mp 132.5–133 ЊC (lit.,51
130 ЊC); 37c, mp 221 ЊC (lit.,52 222 ЊC); 38c, 135–137 ЊC (lit.,53
135–136 ЊC); 39c, mp 235–236 ЊC (lit.,54 235 ЊC); 40b, mp 156–
156.5 ЊC (lit.,55 154–155 ЊC); 40c, mp 315–316 ЊC (lit.,56 317–
318 ЊC); 41c, mp 276–277 ЊC (lit.,57 274–275 ЊC); 42b, mp 171–
172 ЊC (lit.,58 170–171 ЊC); 46c, oil (lit.,59 bp 141–142 ЊC); 47c,
mp 133–134 ЊC (lit.,60 132.4–132.7 ЊC); 48b, mp 109 ЊC (lit.,61
108–109 ЊC); 48c, oil (lit.,62 bp 65 ЊC/11 mmHg); 49c, oil (lit.,63
bp 80–83 ЊC/10 mmHg); 50c, oil (lit.,64 bp 175–177 ЊC); 51, mp
8 I. Watanabe, Y. Satoh, K. Enomoto, S. Seki and K. Sakashita,
Agric. Biol. Chem., 1987, 51, 3201.
9 K. Ryuno, T. Nagasawa and H. Yamada, Agric. Biol. Chem., 1988,
52, 1813.
10 (a) P. A. Collins and C. J. Knowles, J. Gen. Microbiol., 1983, 129,
711; (b) E. A. Linton and C. J. Knowles, J. Gen. Microbiol., 1986,
132, 1493; (c) P. A. Vaughan, P. S. J. Cheetham and C. J. Knowles,
J. Gen. Microbiol., 1988, 134, 1099.
11 (a) T. Nagasawa, K. Takeuchi, V. Nardi-Dei, Y. Mikara and
H. Yamada, Appl. Microbiol. Biotechnol., 1991, 34, 783; (b)
M. Kobayashi, H. Komeda, T. Nagasawa, H. Yamada and
S. Shimizu, Biosci. Biotechnol. Biochem., 1993, 57, 1949; (c)
T. Nagasawa, T. Nakamura and H. Yamada, Arch. Microbiol., 1990,
155, 13.
12 (a) T. Nagasawa, H. Schimizu and H. Yamada, Appl. Microbiol.
Biotechnol., 1993, 40, 189; (b) M. Kobayashi, T. Nagasawa and
H. Yamada, Trends Biotechnol., 1992, 10, 402.
13 S. Makadevan and K. V. Thimann, Arch. Biochem. Biophys., 1964,
107, 62; (b) R. H. Hook and W. Robinson, J. Biol. Chem., 1964, 239,
4263.
14 T. Nagasawa and H. Yamada, Trends Biotechnol., 1989, 7, 153 and
references cited therein.
15 For a useful overview, see J. Crosby, J. Moilliet, J. S. Parratt and
N. J. Turner, J. Chem. Soc., Perkin Trans. 1, 1994, 1679.
16 (a) T. Nagasawa, C. D. Mathew, J. Mauger and H. Yamada, Appl.
Environ. Microbiol., 1988, 54, 1766; (b) J. Mauger, T. Nagasawa and
H. Yamada, J. Biotechnol., 1988, 8, 87; (c) J. Mauger, T. Nagasawa
and H. Yamada, Tetrahedron, 1989, 45, 1347.
17 (a) P. Honicke-Schmidt and M. P. Schneider, J. Chem. Soc., Chem.
Commun., 1990, 648; (b) M. A. Cohen, J. Sawden and N. J. Turner,
Tetrahedron Lett., 1990, 31, 7223; (c) N. Klempier, A. de Raadt,
K. Faber and H. Griengl, Tetrahedron Lett., 1991, 32, 341.
J. Chem. Soc., Perkin Trans. 1, 1997
1103