Copper(II)-Catalyzed Oxidation of Alcohols
SHORT COMMUNICATION
Acknowledgments
Conclusion
This work was supported by the Department of Science and Tech-
nology (Sanction No. SR/S1/OC-092002), New Delhi and the
Council of Scientific and Industrial Research [Sanction No.
01(1804)/02/EMR-II], New Delhi.
An efficient catalytic oxidation procedure that allows the
transformation of simple alcohols into carboxylic acids and
ketones has been described.
[1] [1a]
[1b]
A. J. Mancuso, D. Swern, Synthesis 1981, 165Ϫ185.
T.
T. Tidwell, Synthesis 1990, 857Ϫ870. [1c] D. B. Dess, J. C. Mar-
tin, J. Org. Chem. 1983, 48, 4155Ϫ4156.
Martin, J. Am. Chem. Soc. 1991, 113, 7277Ϫ7287.
[1d]
D. B. Dess, J. C.
Experimental Section
[1e]
W. J.
Klein in Organic Syntheses by Oxidation with Metal Com-
pounds (Eds.: W. J. Mijs, C. R. H. I. Jonge), Plenum Press, New
York, 1986. [1f]G. Piancatelli, A. Scettri, M. D’Auria, Synthesis
1982, 245Ϫ258. [1g] M. Fetizon, M. Golfier, P. Mourgues, J. M.
Louis in Organic Syntheses by Oxidation with Metal Com-
pounds (Eds.: W. J. Mijs, C. R. H. I. Jonge) Plenum Press, New
York, 1986, pp. 503Ϫ567.
Preparation of Complex 1: The reaction of salicylaldehyde (122 mg,
1 mmol) with ethylenediamine (30 mg, 0.5 mmol) in methanol (5
mL) afforded salen-H2 as a lemon-yellow powder in 81% (217 mg),
which was further treated with NaBH4 (1 mmol, 37.83 mg) in meth-
anol (5 mL) at ambient temperature for 2 h. Removal of the solvent
in a rotary evaporator followed by treatment with water afforded
salen-H4 as a colorless powder in 72% (162 mg) yield. 1H NMR
(CDCl3, 90 MHz): δ ϭ 6.7Ϫ7.2 (m, 8 H), 3.9 (s, 4 H), 2.85 (s, 4 H)
ppm. IR (KBr): ν˜ ϭ 3288, 2909, 2868, 2827, 1608, 1565, 1398,
1260, 999 cmϪ1. C16H20N2O2 (272.3): calcd. C 70.56, H 7.40, N
10.29; found C 70.59, H 7.38, N 10.25. The salen-H4 (150 mg,
0.55 mmol) was then treated with Cu(OAc)2 (200 mg, 1 mmol) in
methanol (10 mL) at 50 °C for 2.5 h under nitrogen. Evaporation
of the solvent in a rotary evaporator gave a powder which was
purified on silica gel (60Ϫ120 mesh) column chromatography using
EtOAc and MeOH (15:5) as a eluent to afford complex 1 as a green
powder in 70% yield. UV/Vis (CH3CN): λmax ϭ 328, 584 nm. FAB-
MS: m/z ϭ 334 [Mϩ]. C16H18CuN2O2 (333.9): calcd. C 57.55, H
5.43, Cu 19.03, N 8.39; found C 57.51, H 5.42, Cu 19.00, N 8.40.
[2]
[2a] G. Csjernyik, A. H. Ell, L. Fadini, B. Pugin, J.-E. Backvall,
[2b]
J. Org. Chem. 2002, 67, 1657Ϫ1662.
K. P. Peterson, R. C.
[2c]
Larock, J. Org. Chem. 1998, 63, 3185Ϫ3189.
T. Nishimura,
T. Onoue, K. Ohe, S. Uemura, Tetrahedron Lett. 1998, 39,
[2d]
6011Ϫ6014.
A. Dijksman, I. W. C. E. Arends, R. A. Shel-
[2e]
don, Chem. Commun. 1999, 1591Ϫ1592.
C. Bilgrien, S.
Davis, R. S. Drago, J. Am. Chem. Soc. 1987, 109, 3786Ϫ3787.
[2f]
R. Lenz, S. V. Ley, J. Chem. Soc., Perkin Trans. 1 1997,
3291Ϫ3292. [2g] G.-J. ten Brink, I. W. C. E. Arends, R. A. Shel-
[2h]
don, Science 2000, 287, 1637Ϫ1640.
K. Masutani, T. Uch-
ida, R. Irie, T. Katsuki, Tetrahedron Lett. 2000, 41, 5119Ϫ5123.
[2i]
M. Zhao, J. Li, E. Mano, Z. Song, D. M. Tschaen, E. J. J.
Grabowski, P. J. Reider, J. Org. Chem. 1999, 64, 2564Ϫ2566.
[2j]
P. H. J. Carlsen, T. Katsuki, V. S. Martin, K. B. Sharpless,
[2k]
J. Org. Chem. 1981, 46, 3936Ϫ3938.
H. Tohma, S. Takiz-
awa, T. Maegawa, Y. Kita, Angew. Chem. 2000, 112, 1362; An-
gew. Chem. Int. Ed. 2000, 39, 1306Ϫ1308.
Typical Procedure for the Oxidaiton: Alcohol (2 mmol), complex 1
(1 mol %) and 30% H2O2 (10 mmol, 2.26 mL) were dissolved in
acetonitrile (2 mL) and the homogeneous solution was heated at
ca. 80 °C under atmospheric oxygen for the appropriate time. After
completion of the reaction, the reaction mixture was treated with
dimethyl sulfide (ca. 50 µL) at room temperature and the aqueous
acetonitrile was removed in a rotary evaporator under reduced
pressure. The residue was treated with ethyl acetate and the insol-
uble copper salt was separated. The organic solution was concen-
trated and passed through a short pad of silica gel (60Ϫ120 mesh)
using ethyl acetate and hexane to afford the analytically pure com-
pound whose identity was ascertained by IR, NMR (1H and 13C)
and melting point (solid) and by comparison with authentic
sample.
[3] [3a]
I. E. Marko, A. Gautier, I. ChelleϪRegnaut, P. R. Giles,
M. Tsukazaki, C. J. Urch, S.M. Brown, J. Org. Chem. 1998, 63,
[3b]
7576Ϫ7577.
don, Synlett 2001, 102Ϫ104.
A. Dijksman, I. W. C. E. Arends, R. A. Shel-
[3c]
B. Betzemeier, M. Cavazzini,
S. Quici, P. Knochel, Tetrahedron Lett. 2000, 41, 4343Ϫ4346.
[3d] K. S. Coleman, M. Coppe, C. Thomas, J. A. Osborn, Tetra-
hedron Lett. 1999, 40, 3723Ϫ3726.
[4] [4a]
E. SaintϪAman, S. Menage, L.-L. Pierre, E. Defrancq, G.
[4b]
Gellon, New. J. Chem. 1998, 393Ϫ394.
P. Chaudhuri, M.
Hess, J. Muller, K. Hildenbrand, E. Bill, T. Weyhermuller, K.
Wieghardt, J. Am. Chem. Soc. 1999, 121, 9599Ϫ9610.
S. E. Martin, A. Garrone, Tetrahedron Lett. 2003, 44, 549Ϫ552.
Received May 27, 2003
[5]
Early View Article
Published Online September 8, 2003
Eur. J. Org. Chem. 2003, 3913Ϫ3915
2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3915