T. Matsuda et al. / Tetrahedron Letters 42 (2001) 8319–8321
8321
significantly change the interaction of CO2 and enzyme,
causing adsorption of CO2 on the enzyme as reported
in other proteins30 and/or incorporation of CO2 in the
substrate-binding pocket of the enzyme as reported in
the incorporation of organic molecule in the
enzymes.18,24 These interactions may change the confor-
mation of the enzyme gradually corresponding to the
pressure, resulting in a continuous change in enantiose-
lectivity. However, further investigation is necessary to
clarify the mechanism.
8. Mori, T.; Okahata, Y. Chem. Commun. 1998, 2215–2216.
9. Mori, T.; Kobayashi, A.; Okahata, Y. Chem. Lett. 1998,
921–922.
10. Wang, Y.-F.; Lalonde, J. J.; Momongan, M.; Bergbreiter,
D. E.; Wong, C.-H. J. Am. Chem. Soc. 1988, 110, 7200–
7205. Vinyl alcohol initially formed by the reaction is
usually converted to acetaldehyde spontaneously.
11. Matsuda, T.; Harada, T.; Nakamura, K. Chem. Commun.
2000, 1367–1368.
12. Chen, C.-S.; Fujimoto, Y.; Girdaukas, G.; Sih, C. J. J.
Am. Chem. Soc. 1982, 104, 7294–7299. The E value was
used to evaluate enantioselectivity. E=(VA/KA)/(VB/KB)
where VA, KA and VB, KB denote maximal velocities and
Michaelis constants of the fast- and slow-reacting enan-
tiomers, respectively.
13. Matsuda, T.; Harada, T.; Nakajima, N.; Itoh, T.; Naka-
mura, K. J. Org. Chem. 2000, 65, 157–163.
14. Mesiano, A. J.; Beckman, E. J.; Russell, A. J. Chem. Rev.
1999, 99, 623–633.
In conclusion, the enantioselectivity of an environmen-
tally benign reaction pairing the natural catalyst and
natural solvent was examined, and the continuous
change in enantioselectivity without changing the
molecular structure of the solvent, which is not possible
by simply changing the organic solvent, was observed
using CO2. We believe this reaction will be helpful not
only for studying the origin of enantioselectivity but
also for synthesis of useful compounds while keeping
harmony with the natural environment.
15. Cernia, E.; Palocci, C. In Methods in Enzymology; Abel-
son, J. N.; Simon, M. I., Eds. Lipases in supercritical
fluids; Academic Press: San Diego, 1997; Vol. 286, pp.
495–508.
16. Kamat, S. V.; Beckman, E. J.; Russell, A. J. Crit. Rev.
Biotechnol. 1995, 15, 41–71.
Acknowledgements
17. Log P (hydrophobicity parameter: the logarithm of the
partition coefficient of a solvent between octanol and
water) is usually used to understand the solvent effect of
the biocatalytic reaction.
18. Nakamura, K.; Kinoshita, M.; Ohno, A. Tetrahedron
1995, 51, 8799–8808.
19. Kamat, S. V.; Beckman, E. J.; Russell, A. J. J. Am.
Chem. Soc. 1993, 115, 8845–8846.
20. Fontes, N.; Almeida, M. C.; Peres, C.; Garcia, S.; Grave,
J.; Aires-Barros, M. R.; Soares, C. M.; Cabral, J. M. S.;
Maycock, C. D.; Barreiros, S. Ind. Eng. Chem. Res. 1998,
37, 3189–3194.
The authors greatly appreciate the helpful advice given
by Professor Okahata and Dr. Mori at the Tokyo
Institute of Technology. This work was supported by a
Grant-in-Aid from the Taisho Pharmaceutical Co.
Award in Synthetic Organic Chemistry, Japan, the
Sasakawa Scientific Research Grant from the Japan
Science Society, and a Grant-in-Aid for Encouragement
of Young Scientists (No. 12740400) and a Grant-in-Aid
for Scientific Research (C) (No. 11640602) from the
Ministry of Education, Science, Sports and Culture of
Japan.
21. Ikushima, Y. Adv. Colloid Interface Sci. 1997, 71–72,
259–280.
22. Ikushima, Y.; Saito, N.; Arai, M.; Blanch, H. W. J. Phys.
Chem. 1995, 99, 8941–8944.
23. Ikushima, Y.; Saito, N.; Yokoyama, T.; Hatakeda, K.;
Ito, S.; Arai, M.; Blanch, H. W. Chem. Lett. 1993,
109–112.
24. Yennawar, N. H.; Yennawar, H. P.; Farber, G. K.
Biochemistry 1994, 33, 7326–7336.
25. Hirose, Y.; Kariya, K.; Sasaki, K.; Kurono, Y.; Ebiike,
H.; Achiwa, K. Tetrahedron Lett. 1992, 33, 7157–7160.
26. Rhodes, T. A.; O’Shea, K.; Bennett, G.; Johnston, K. P.;
Fox, M. A. J. Phys. Chem. 1995, 99, 9903–9908.
27. Moriyoshi, T.; Kita, T.; Uosaki, Y. Ber. Bunsenges. Phys.
Chem. 1993, 97, 589–596.
References
1. Kiran, E.; Debenedetti, P. G.; Peters, C. J. Supercritical
Fluids Fundamentals and Applications; Kluwer Academic:
Dordrecht, 2000.
2. Jessop, P. G.; Ikariya, T.; Noyori, R. Chem. Rev. 1999,
99, 475–493.
3. Kainz, S.; Brinkmann, A.; Leitner, W.; Pfaltz, A. J. Am.
Chem. Soc. 1999, 121, 6421–6429.
4. Kitazume, T.; Yamazaki, T. In ACS Symposium Series
No. 456, Selective Fluorination in Organic and Bioorganic
Chemistry; Welch, J. T., Ed. Effect of the fluorine atom
on stereocontrolled synthesis; American Chemical Soci-
ety: Washington, DC, 1991; pp. 175–185.
28. Nakaya, H.; Miyawaki, O.; Nakamura, K. Enzyme
Microb. Technol. 2001, 28, 176–182.
29. Huang, F.-H.; Li, M.-H.; Lee, L. L.; Starling, K. E.;
Chung, F. T. H. J. Chem. Eng. Jpn. 1985, 18, 490–496.
30. Nakamura, K.; Hoshino, T.; Ariyama, H. Agric. Biol.
Chem. 1991, 55, 2341–2347.
5. Resnati, G. Tetrahedron 1993, 49, 9385–9445.
6. Itoh, T.; Sakabe, K.; Kudo, K.; Ohara, H.; Takagi, Y.;
Kihara, H.; Zagatti, P.; Renou, M. J. Org. Chem. 1999,
64, 252–265.
7. Sakai, T.; Yan, F.; Kashino, S.; Uneyama, K. Tetra-
hedron 1996, 52, 233–244.