RSC Advances
Paper
of 1.0 mL minꢁ1. The ow oxidation was conducted at 100 C
under 40 bar of the system pressure. The resulting solution was
collected for 18 min (17.7 mL) and extracted with EtOAc (20 mL
ꢂ 4). The combined organic phase was washed with brine
(20 mL ꢂ 3) and dried over Na2SO4. Aer removal of the solvent
by evaporation, a colorless oil was obtained in 86% yield
(p-anisic aldehyde, 5b, 52 mg).
Chem., 2010, 12, 441–451; (j) K. Kaizuka, H. Miyamura and
S. Kobayashi, J. Am. Chem. Soc., 2010, 132, 15096–15098; (k)
R. L. Oliveira, P. K. Kiyohara and L. M. Rossi, Green Chem.,
2010, 14, 144–149; (l) Y. Sugano, Y. Shiraishi,
D. Tsukamoto, S. Ichikawa, S. Tanaka and T. Hirai, Angew.
Chem., Int. Ed., 2013, 52, 5295–5299.
ꢀ
3 For typical examples of aerobic oxidation with
heterogeneous catalysts in water, see: (a) Y. Uozumi and
R. Nakao, Angew. Chem., Int. Ed., 2003, 42, 194–197; (b)
Y. M. A. Yamada, T. Arakawa, H. Hocke and Y. Uozumi,
Angew. Chem., Int. Ed., 2007, 46, 704–706; (c)
Y. M. A. Yamada, T. Arakawa, H. Hocke and Y. Uozumi,
Chem.–Asian J., 2009, 4, 1092–1098; (d) T. Osako and
Y. Uozumi, Chem. Lett., 2009, 38, 902–903; (e) A. Abad,
Typical procedure for gram-scale synthesis of the surfactant 8
An aqueous solution of tetraethylene glycol dodecyl ether (7a)
(0.05 M) was pumped into an X-Cube reactor system installed
with two catalyst cartridges (ARP-Pt: 300 mg ꢂ 2: total 0.017
mmol Pt) at a ow rate of 0.6 mL minꢁ1. The oxidation was
conducted at 100 ꢀC under 60 bar of the system pressure. Aer
the continuous ow for 36 h, 1290 mL of the product solution
was collected. The resulting solution was concentrated under
freeze-dry conditions to afford 8a (white solid, 40 g).
´
´
P. Concepcion, A. Corma and H. Garcıa, Angew. Chem., Int.
Ed., 2005, 44, 4066–4069; (f) T. Wang, H. Shou, Y. Kou and
H. Liu, Green Chem., 2009, 11, 562–568; (g) Z. Ma, H. Yang,
Y. Qin, Y. Hao and G. Li, J. Mol. Catal. A: Chem., 2010, 331,
78–85; (h) A. Ohtaka, Y. Kono, S. Inui, S. Yamamoto,
T. Ushiyama, O. Shimomura and R. Nomura, J. Mol. Catal.
A: Chem., 2012, 360, 48–53; (i) L. Tang, X. Guo, Y. Li,
S. Zhang, Z. Zha and Z. Wang, Chem. Commun., 2013, 49,
5213–5215; (j) H. Tsunoyama, H. Sakurai, Y. Negishi and
T. Tsukuda, J. Am. Chem. Soc., 2005, 127, 9374–9375; (k)
H. Tsunoyama, T. Tsukuda and H. Sakurai, Chem. Lett.,
2007, 36, 212–213; (l) R. Dun, X. Wang, M. Tan, Z. Huang,
X. Huang, W. Ding and X. Lu, ACS Catal., 2013, 3, 3063–
3066; (m) Y. Shi, H. Yang, X. Zhao, T. Cao, J. Chen, W. Zhu,
Y. Yu and Z. Hou, Catal. Commun., 2012, 18, 142–146; (n)
B. Karimi, H. Behzadnia, M. Bostina and H. Vali, Chem.–
Eur. J., 2012, 18, 8634–8640; (o) T. Lu, Z. Du, J. Liu, H. Ma
and J. Xu, Green Chem., 2013, 15, 2215–2221; (p)
M. Mahyari, A. Shaabani and Y. Bide, RSC Adv., 2013, 3,
22509–22517; (q) J. Albadi, A. Alihoseinzadeh and
A. Razeghi, Catal. Commun., 2014, 49, 1–5. See also ref. 2e.
4 For typical examples of aerobic oxidation with
heterogeneous catalysts under solvent-free conditions, see:
(a) D. I. Enache, J. K. Edwards, P. Landon, B. Solsona-
Espriu, A. F. Carley, A. A. Herzing, M. Watanabe,
C. J. Kiely, D. W. Knight and G. J. Hutchings, Science, 2006,
311, 362–365; (b) N. Zheng and G. D. Stucky, Chem.
Commun., 2007, 3862–3864; (c) F. Li, Q. Zhang and
Y. Wang, Appl. Catal., A, 2008, 334, 217–226; (d) Y. Chen,
H. Lim, Q. Tang, Y. Gao, T. Sun, Q. Yan and Y. Yamg, Appl.
Catal., A, 2010, 380, 55–65; (e) P. Zhang, Y. Gong, H. Li,
Z. Chen and Y. Wang, Nat. Commun., 2013, 4, 2586. See
also ref. 2d–f and 3e.
Acknowledgements
This work was nancially supported by the METI/NEDO, the
JST-CREST (Creation of Innovative Functions of Intelligent
Materials on the Basis of Element Strategy) and the JSPS (Grant-
in-Aid for Scientic Research on Innovative Area no. 2105). We
appreciate the partial funding from Grant-in-Aid for young
scientists (B) no. 22750141, 26810099) and Shionogi & Co., Ltd.
(Shionogi Award in Synthetic Organic Chemistry). We are
grateful to Nihon Surfactant Kogyo for providing poly(ethylene
glycol)dodecyl ether 7.
Notes and references
1 (a) R. A. Sheldon and J. K. Kochi, Metal-Catalyzed Oxidations
of Organic Compounds, Academic Press, New York, 1981; (b)
M. Hudlicky, Oxidations in Organic Chemistry, ACS
Monograph
Series,
American
Chemical
Society,
Washington, DC, 1990; (c) R. A. Sheldon, Chem. Soc. Rev.,
2012, 41, 1437–1451.
2 For typical examples of aerobic oxidation with
heterogeneous catalysts in organic solvents, see: (a)
K. Yamaguchi, K. Mori, T. Mizugaki, K. Ebitani and
K. Kaneda, J. Am. Chem. Soc., 2000, 122, 7144–7145; (b)
N. Kakiuchi, Y. Maeda, T. Nishimura and S. Uemura, J.
Org. Chem., 2001, 66, 6620–6625; (c) Y.-C. Son,
V. D. Makwana, A. R. Howell and S. L. Suib, Angew. Chem.,
Int. Ed., 2001, 40, 4280–4283; (d) K. Yamaguchi and
N. Mizuno, Angew. Chem., Int. Ed., 2002, 41, 4538–4542; (e)
K. Mori, T. Hara, T. Mizugaki, K. Ebitani and K. Kaneda, J.
Am. Chem. Soc., 2004, 126, 10657–10666; (f) H. Miyamura,
R. Matsubara, Y. Miyazaki and S. Kobayashi, Angew. Chem.,
Int. Ed., 2007, 46, 4151–4154; (g) C. Lucchesi, T. Inasaki,
H. Miyamura, R. Matsubara and S. Kobayashi, Adv. Synth.
Catal., 2008, 350, 1996–2000; (h) S. Mori, M. Takubo,
K. Makida, T. Yanase, S. Aoyagi, T. Maegawa, Y. Monguchi
and H. Sajiki, Chem. Commun., 2009, 5159–5161; (i)
H. Yang, X. Han, Z. Ma, R. Wang, J. Liu and X. Ji, Green
5 For recent reviews, see: (a) T. Mallat and A. Baiker, Chem.
Rev., 2004, 104, 3037–3058; (b) T. Matsumoto, M. Ueno,
N. Wang and S. Kobayashi, Chem.–Asian J., 2008, 3, 196–
214; (c) C. Parameggiani and F. Cardona, Green Chem.,
2012, 14, 547–564; (d) S. E. Davis, M. S. Die and R. J. Davis,
´
Green Chem., 2013, 15, 17–45; (e) V. C. Corberan,
´
´
´
´
´
M. E. Gonzalez-Perez, S. Martınez-Gonalez and A. Gomez-
´
Avviles, Appl. Catal., A, 2014, 474, 211–223.
6 For recent reviews on continuous ow chemistry, see: (a)
J. Wegner, S. Ceylan and A. Kirschning, Chem. Commun.,
2652 | RSC Adv., 2015, 5, 2647–2654
This journal is © The Royal Society of Chemistry 2015