Journal of the American Chemical Society
Page 4 of 5
CO2, see: (a) Tazuke, S.; Kazama, S.; Kitamura, N J. Org. Chem.
1986, 51, 4548. (b) Ito, Y.; Uozu, Y.; Matsuura, T J. Chem. Soc.,
This research was supported by JST ACT-C Grant Number
JPMJCR12Y3 and JSPS KAKENHI Grant Number
24245019, 15H05800 and 17H06143.
1
2
3
4
5
6
7
8
Chem. Commun. 1988, 562. (c) Tagaya, H.; Onuki, M.; Tomioka,
Y.; Wada, Y.; Karasu, M.; Chiba, K. Bull. Chem. Soc. Jpn. 1990,
63, 3233. (d) Aresta, M.; Dibenedetto, A.; Baran, T.; Wojtyła, S.;
Macyk, W. Faraday Discuss. 2015, 183, 413. (e) Masuda, Y.; Ishida,
N.; Murakami, M. J. Am. Chem. Soc. 2015, 137, 14063. (f) Ishida,
N.; Masuda, Y.; Uemoto, S.; Murakami, M. Chem. Eur. J. 2016,
22, 6524. (g) Seo, H.; Katcher, M. H.; Jamison, T. F. Nat. Chem.
2017, 9, 453.
(9) We recently reported the Rh-catalyzed hydrocarboxylation of
alkenes by using a combination of Rh and photoredox catalysts
with N,N-diisopropylethylamine as a sacrificial electron donor
instead of metallic reductants under visible light irradiation. See:
Murata, K.; Numasawa, N.; Shimomaki, K.; Takaya, J.; Iwasawa,
N. Chem. Commun. 2017, 53, 3098.
(10) Reduction of aryl halides could proceed by the photoredox
catalyst and an amine under photo-irradiation conditions in the
absence of Pd catalyst. However, there would also be a Pd-
catalyzed reduction process because the amount of the hydrogen-
ated product was increased under the same conditions in the pres-
ence of Pd(OAc)2 amd Xphos. For more discussions on the for-
mation of the reduction product, see SI.
REFERENCES
(1) For examples of transition-metal catalyzed carboxylation of
aryl, alkenyl and alkyl halides with CO2, see: (a) Correa, A.; Mar-
tín, R. J. Am. Chem. Soc. 2009, 131, 15974. (b) Fujihara, T.; Nogi,
K.; Xu, T.; Terao, J.; Tsuji, Y. J. Am. Chem. Soc. 2012, 134, 9106.
(c) Leon, T.; Correa, A.; Martín, R. J. Am. Chem. Soc. 2013, 135,
1221. (d) Tran-Vu, H.; Daugulis, O. ACS Catal. 2013, 3, 2417. (e)
Liu, Y.; Cornella, J.; Martín, R. J. Am. Chem. Soc. 2014, 136,
11212. (f) Wang, X.; Liu, Y.; Martín, R. J. Am. Chem. Soc. 2015,
137, 6476. (g) Zhang, S.; Chen, W. Q.; Yu, A.; He, L. N. Chem.
Cat. Chem. 2015, 7, 3972. (h) Moragas, T.; Martín, R. Synthesis
2016, 48, 2816. (i) Börjesson, M.; Moragas, T.; Gallego, D.; Mar-
tin, R. J. Am. Chem. Soc. 2016, 138, 7504. (j) Börjesson, M.;
Moragas, T.; Gallego, D.; Martín, R. ACS Catal. 2016, 6, 6739.
(2) For examples of transition-metal catalyzed carboxylation of
organic pseudo halides with CO2, see: (a) Correa, A.; Leon, T.;
Martín, R. J. Am. Chem. Soc. 2014, 136, 1062. (b) Nogi, K.; Fuji-
hara, T.; Terao, J.; Tsuji, Y. Chem. Commun. 2014, 50, 13052. (c)
Moragas, T.; Cornella, J.; Martín, R. J. Am. Chem. Soc. 2014, 136,
17702. (d) Nogi, K.; Fujihara, T.; Terao, J; Tsuji, Y. J. Org. Chem.
2015, 80, 11618. (e) Mita, T.; Higuchi, Y.; Sato, Y. Chem. Eur. J.
2015, 21, 16391. (f) Rebih, F.; Andreini, M.; Moncomble, A.;
Harrison-Marchand, A.; Maddaluno, J.; Durandetti, M. Chem. Eur.
J. 2016, 22, 3758. (g) Moragas, T.; Gaydou, M.; Martín, R. An-
gew. Chem. Int. Ed. 2016, 55, 5053.
(3) For examples of palladium-catalyzed carboxylation using
metallic reductants, see: (a) Yeung, C. S.; Dong, V. M. J. Am.
Chem. Soc. 2008, 130, 7826. (b) Takaya, J.; Iwasawa, N. J. Am.
Chem. Soc. 2008, 130, 15254. (c) Takaya, J.; Sasano, K.; Iwasawa,
N. Org. Lett. 2011, 13, 1698. (d) Mita, T.; Tanaka, H.; Higuchi,
Y.; Sato, Y. Org. Lett. 2016, 18, 2754.
(4) The reaction of aryl halides with CO2 utilizing two-electron
reduction of Pd(II) species was reported under electroreductive
conditions, see: (a) Torii, S.; Tanaka, H.; Hamatani, T.; Morisaki,
K.; Jutand, A.; Pfluger, F.; Fauvarque, J. F. Chem. Lett. 1986, 169.
(b) Amatore, C.; Jutand, A.; Khalil, F.; Nielsen, M. F. J. Am.
Chem. Soc. 1992, 114, 7076.
(5) For examples of the reaction utilizing the reduction of Pd by
photoredox catalysts, see: (a) Lang, S. B.; O’Nele, K. M.; Tunge,
J. A. J. Am. Chem. Soc. 2014, 136, 13606. (b) Xuan, J.; Zeng, T.
T.; Feng, Z. J.; Deng, Q. H.; Chen, J. R.; Lu, L. Q.; Xiao, W. J.;
Alper, H. Angew. Chem. Int. Ed. 2015, 54, 1625. (c) Cheng, W.
M.; Shang, R.; Yu, H. Z.; Fu, Y. Chem. Eur. J. 2015, 21, 13191.
(d) Lang, S. B.; O’Nele, K. M.; Douglas, J. T.; Tunge, J. A. Chem.
Eur. J. 2015, 21, 18589. (e) Kato, S.; Saga, Y.; Kojima, M.; Fuse,
H.; Matsunaga, S.; Fukatsu, A.; Kondo, M.; Masaoka, S.; Kanai,
M. J. Am. Chem. Soc. 2017, 139, 2204.
(6) For examples of the reaction utilizing the oxidation of Pd by
photoredox catalysts, see: (a) Neufeldt, S. R.; Sanford, M. S. Adv.
Synth. Catal. 2012, 354, 3517. (b) Choi, S.; Chatterjee, T.; Choi.
W. J.; You, Y.; Cho, E. J. ACS. Catal. 2015, 5, 4796. (c) Zhou,
C.; Li, P.; Zhu, X.; Wang, L. Org. Lett. 2015, 17, 6198. (d) Liu,
K.; Zou, M.; Lei, A. J. Org. Chem. 2016, 81, 7088. (e) Kärkäs, M.
D.; Bosque, I.; Matsuura, B. S.; Stephenson, C. R. J. Org. Lett.
2016, 18, 5166. (f) Jiang, J.; Zhang, W. M.; Dai, J. J.; Xu, J.; Xu,
H. J. J. Org. Chem. 2017, 82, 3622.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(11) In most cases, small amounts of hydrogenated products
were detected under these reaction conditions.
(12) For examples of direct reduction of aryl halides by a photo-
redox catalyst, see: (a) Nguyen, J. D.; D’Amato, E. M.; Naraya-
nam, J. M. R.; Stephenson, C. R. J. Nat.Chem. 2012, 4, 854. (b)
Ghosh, I.; Ghosh, T.; Bardagi, J. I.; König, B. Science, 2014, 346,
725. (c) Devery, J. J.; Nguyen, J. D.; Dai, C.; Stephenson, C. R. J.
ACS Catal. 2016, 6, 5962.
(13) No detectable formation of (PhCOO)PdBr(Xphos) was ob-
served when PhPdBr(Xphos) was subjected to a CO2 atmosphere,
and it is possible that there is an equilibrium between
PhPdBr(Xphos) and (PhCOO)PdBr(Xphos), the former of which
is thermodynamically more stable. The decarboxylation of palla-
dium carboxylates is a well-known process, although usually
higher temperature is required. See: (a) Myers, A. G.; Tanaka, D.;
Mannion, M. R. J. Am. Chem. Soc. 2002, 124, 11250. (b) Tanaka,
D.; Romeril, S. P.; Myers, A. G. J. Am. Chem. Soc. 2005, 127,
10323. (c) Dickstein, J. S.; Mulrooney, C. A.; O’Brien, E. M.;
Morgan, B. J.; Kozlowski, M. C. Org, Lett. 2007, 9, 2441. (d)
Wang, Z.; Ding, Q.; He, X.; Wu, J. Org. Biomol. Chem. 2009, 7,
863. (e) Shang, R.; Xu, Q.; Jiang, Y. Y.; Wang, Y.; Liu, L. Org.
Lett. 2010, 12, 1000. See SI for more detailed discussions on the
mechanism of this reaction.
(14) The reduction potential of [PhPd(Xphos)]+ was also lower
than the Ir catalyst.
(15) For examples of reductive quenching cycle of
[Ir(ppy)2(dtbpy)]+, see: (a) Condie, A. G.; Gonzalez-Gomez, J. C.;
Stephenson, C. R. J. J. Am. Chem. Soc. 2010, 132, 1464. (b)
Tucker, J. W.; Nguyen, J. D.; Narayanam, J. M. R.; Krabbe, S.
W.; Stephenson, C. R. J. Chem. Commun. 2010, 46, 4985.
(c)Larraufie, M. H.; Pellet, R.; Fensterbank, L.; Goddard, J. P.;
Lacote, E.; Malacria, M.; Ollivier, C. Angew. Chem. Int. Ed. 2011,
50, 4463. (d) Miyake, Y.; Nakajima, K.; Nishibayashi, Y. J. Am.
Chem. Soc. 2012, 134, 3338.
(16) This new peak was rather weak, but repeated experiments
confirmed its presence. See SI for details.
(17) The counter cations of the halide and carboxylate anions are
both protons generated from the oxidized amine, and these two
acids are neutralized with the excess Cs2CO3 and/or amine.
(18) Prior additional one-electron reduction of CO2-coordinated
ArPd(I)(Xphos) to [ArPd(0)(Xphos)]– to work as the actual car-
boxylation species is also conceivable.
(7) For examples of the reaction using Pd/photoredox dual cata-
lysts except the reduction or oxidation of Pd, see: (a) Osawa, M.;
Nagai, H.; Akita, M. Dalton Trans. 2007, 827. (b) Zhang, H.;
Huang, X. Adv. Synth. Catal. 2016, 358, 3736.
(8) For examples of UV light-driven carboxylation reactions with
ACS Paragon Plus Environment