3
Supporting information for this article is available online at
References and notes
1. (a) Floss HG, Beale JM, Angew. Chem. 1989;101:147-179;
Angew. Chem. Int. Ed. Engl. 1989, 28, 146-177;
(b) Balkenhohl F, Bussche-Hunnefeld C, Lansky A, Zechel C,
Angew. Chem. 1996;108:2436-2488; Angew. Chem. Int. Ed. Engl.
1996, 35, 2288-2337;
(c) Chong J, Pierrel MA, Atanassova R, Werck-Reichhart D,
Fritig B, Saindrenan P, Plant Physiol. 2001;125:318-328;
(d) Nicolaou KC, Chen JS, Edmonds DJ, Estrada AA, Angew.
Chem. 2009;121:670-732; Angew. Chem. Int. Ed. Engl.
2009;48:660-719
2. (a) Cleaves HJ, Gargaud M, II Carboxylic Acid, In Encyclopedia
of Astrobiology Ed.; Springer: New York, 2011:249;
(b) Peng JB, Qi XX, Wu XF, ChemSusChem. 2016;9:2279-2283;
(c) Peng J. B, Qi XX, Wu XF, Synlett 2016;28:175;
(f) Wu XF, RSC Adv. 2016;6:83831-83837.
acidmarket.
4. (a) Bailey PS, Chem. Rev. 1958;58:925-1010;
(b) Criegee R, Angew. Chem. 1975;87:765-771; Angew. Chem.
Int. Ed. Engl. 1975;14:745-752;
Scheme 2. Control experiments.
To understand the reaction mechanism for this reaction, we
performed some control experiments. The reaction of styrene 1a in
the presence of 10 equiv. aq. TBHP at 105oC for 16 h afforded
benzaldehyde 1b in a good yield (62%) (Scheme 2, a). This implied
that the reaction proceeds through the formation of benzaldehyde as
an intermediate. Next, an oxidation of benzaldehyde 1b was carried
out by using 0.1 equiv. I2 and 0.2 equiv. NaOH to give benzoic acid
2a in 93% yield (Scheme 2, b). This highlighted important role
played by I2 and NaOH for the conversion of benzaldehyde to
benzoic acid. The reaction of styrene 1a under the optimized reaction
conditions afforded benzoic acid 2a in 60% yield (Scheme 2, c)
(c) Shing TKM, in: Comprehensive Organic Synthesis, (Eds.: B.
M. Trost, I. Flemming), Pergamon Press, Oxford, 1991;7:703-
716; (d) Larock RC, in: Comprehensive Organic Transformations,
2nd edn.; Wiley-VCH, New York, 1999:1213-1215;
(e) Carlsen PHJ, Katsuki T, Martin VS, Sharpless KB, J. Org.
Chem. 1981; 46:3936-3938.
5. (a) Shapiro N, Vigalok A, Angew. Chem. 2008;120:2891-2894;
Angew. Chem. Int. Ed. 2008;47: 2849-2852;
(b) Liu M, Li CQ, Angew. Chem. 2016;128:10964-10968; Angew.
Chem. Int. Ed. 2016;55:10806-10810;
(c) Yu H, Ru S, Dai GY, Zhai YY, Lin HL, Han S, Wei YG,
Angew. Chem. 2017;129:3925-3929; Angew. Chem. Int. Ed.
2017;56:3867-3871;
(d) Sarbajna A, Dutta I, Daw P, Dinda S, Rahaman SMW, Sarkar
A, Bera JK, ACS. Catal. 2017;7:2786-2790;
(e) Naimi-Jamal MR, Hamzeali H, Mokhtari J, Boy J, Kaupp G,
ChemSusChem. 2009;2:83-88;
(f) Jiang XG, Zhang JS, Ma SM, J. Am. Chem. Soc. 2016;
138:8344-8347;
(g) Freitag J, Nüchter M, Ondruschka B, Green Chem. 2003;5:
291-295;
Scheme 3. Proposed reaction mechanism.
(h)Venkateswarlu V, Kumar KAA, Gupta S, Singh D,
Vishwakarma PA, Sawant SD, Org. Biomol. Chem. 2015;13:7973-
7978;
(i) Friis SD, Andersen TL, Skrydstrup T, Org. Lett. 2013;15:
1378-1381;
(j) Kumar KAA, Venkateswarlu V, Vishwakarma RA, Sawant SD,
Synthesis, 2015;47:3161-3168;
(k) Shaikh TM, Hong FE, Adv. Synth. Catal. 2011;353:1491-1496;
(l) Griffith WP, Shoair AG, Suriaatmaja M, Synth. Commun.
2000;30:3091-1395;
(m) Hart SR, Whitehead DC, Travis BR, Borhan B, Org. Biomol.
Chem. 2011;9:4741-4744.
(n) Shokouhimehr M, Piao Y, Kim J, Jang Y, Hyeon T, Angew.
Chem. 2007:119;7169-7173 Angew. Chem. Int. Ed. 2007;46:7039-
7043.
On the basis of control experiments, the reaction mechanism for one-
pot conversion of styrene to benzoic acid is depicted in Scheme 3.
Initially, styrene 1a in the presence of aq. TBHP forms an
intermediate benzaldehyde151b via dioxetane formation which on an
oxidation by using I2 as a catalyst and NaOH as a base forms benzoic
acid 2a.
In summary, we have developed a one-pot novel and
sustainable protocol for the synthesis of aryl carboxylic acids
from readily available styrene. This protocol is greener and
practically viable due to the use of an inexpensive aq. TBHP as
an oxidant as well as a solvent. The remarkable features of this
protocol are use of cheap catalyst, transition metal-free
conditions, wide substrate scope, column chromatography-free
purification which makes it ideal for gram scale production.
(o) Shokouhimehr M, Shin KY, Lee JS, Hackett MJ, Jun SW, Oh
MH, Jang J, Hyeon T, J. Mater. Chem. A. 2014;2:7593-7599.
6. (a) Wiberg KB, in Oxidation in Organic Chemistry, Academic
Press, New York, 1965;Part A:69;
(b) Cainelli G and Cardillo G, in Chromium Oxidations in Organic
Chemistry Springer, New York, 1984:23;
Acknowledgment
(c) Tojo G and Fernandez M, Oxidation of Primary Alcohols to
B.N.P. and P.A.S. thank University Grant Commission, New
Delhi, India for providing fellowships. B.S.P. and A.C.C. thank
DRDO, India (sanction no. ERIP/ER/1503212/M/01/1666) for
financial support. K.S.V. and A.C.C. thank DST-SERB, India
(sanction no. SB/FT/CS-147/2013) for financial support.
Carboxylic Acids:
A Guide to Current Common Practice,
Springer, New York, 2007.
7. (a) Deng X, Friend CM, J. Am. Chem. Soc. 2005;127:17178-
17179; (b) Klust A, Madix RJ, J. Am. Chem. Soc. 2006;128:1034-
1035;
(c) Schroder M, Griffith WP, J. Chem. Soc. Dalton Trans. 1978:
1599-1602;
Supporting Information