E
A. K. Khatana et al.
Special Topic
Synthesis
trans-4-Nitrocinnamic Acid (2u)12g
(3) For selected recent reviews on organocatalysis, see: (a) Qin, Y.;
Zhu, L.; Luo, S. Chem. Rev. 2017, 117, 9433. (b) James, T.;
Gemmeren, M.-V.; List, B. Chem. Rev. 2015, 115, 9388. (c) Volla,
C. M. R.; Atodiresei, I.; Rueping, M. Chem. Rev. 2014, 114, 2390.
(4) For selected recent reviews on NHC catalysis, see: (a) Murauski,
K. J. R.; Jaworski, A. A.; Scheidt, K. A. Chem. Soc. Rev. 2018, 47,
1773. (b) Menon, R. S.; Biju, A. T.; Nair, V. Beilstein J. Org. Chem.
2016, 12, 444. (c) Flanigan, D. M.; Romanov-Michailidis, F.;
White, N. A.; Rovis, T. Chem. Rev. 2015, 115, 9307.
(d) Mahatthananchai, J.; Bode, J. W. Acc. Chem. Res. 2014, 47,
696. (e) Ryan, S. J.; Candish, L.; Lupton, D. W. Chem. Soc. Rev.
2013, 42, 4906. (f) Izquierdo, J.; Hutson, G. E.; Cohen, D. T.;
Scheidt, K. A. Angew. Chem. Int. Ed. 2012, 51, 11686.
Off white solid; yield: 78 mg (80%).
1H NMR (400 MHz, DMSO-d6): δ = 12.50 (br s, 1 H, COOH), 8.22 (d,
J = 8.8 Hz, 2 H, Ar-H), 7.96 (d, J = 8.8 Hz, 2 H, Ar-H), 7.68 (d, J = 16 Hz, 1
H, Alkene-H), 6.73 (d, J = 16 Hz, 1 H, Alkene-H).
(E)-α-Methylcinnamic Acid (2v)12h
White solid; yield: 61 mg (75%).
1H NMR (400 MHz, CDCl3): δ = 11.60 (br s, 1 H, COOH), 7.75 (d, J = 1.2
Hz, 1 H, Alkene-H), 7.36–7.21 (m, 5 H, Ar-H), 2.05 (d, J = 1.2 Hz, 3 H, α-
CH3).
(5) For selected recent reviews on oxidative NHC catalysis, see:
(a) Albanese, D. C. M.; Gaggero, N. Eur. J. Org. Chem. 2014, 5631.
(b) De Sarkar, S.; Biswas, A.; Samanta, R. C.; Studer, A. Chem. Eur.
J. 2013, 19, 4664. (c) Knappke, C. E. I.; Imami, A.; Jacobi von
Wangelin, A. ChemCatChem 2012, 4, 937. (d) Uno, T.; Inokuma,
T.; Takemoto, Y. Chem. Commun. 2012, 48, 1901. (e) De Sarkar,
S.; Grimme, S.; Studer, A. J. Am. Chem. Soc. 2010, 132, 1190.
(6) For NHC-catalyzed oxidation of aldehydes in air, see: (a) Maji,
B.; Vedachalan, S.; Ge, X.; Cai, S.; Liu, X.-W. J. Org. Chem. 2011,
76, 3016. (b) Park, J. H.; Bhilare, S. V.; Youn, S. W. Org. Lett. 2011,
13, 2228.
Funding Information
B.T. thanks the Science & Engineering Research Board (SERB), New
Delhi, India, for a research grant (EMR/2015/00097).
Secince
&
E
n
gn
i
e
enri
g
Reseacrh
B
o
ard
S(
E
R
B
,)
N
e
w
D
he
l
i
E(
M
R
2/
0
1
5
0/
0
0
9
7)
Acknowledgment
A.K.K. thanks CSIR, New Delhi, India for a fellowship.
(7) (a) Yoshida, M.; Katagiri, Y.; Zhu, W.-B.; Shishido, K. Org. Biomol.
Chem. 2009, 7, 4062. (b) Gu, L.; Zhang, Y. J. Am. Chem. Soc. 2010,
132, 914. (c) Nair, V.; Varghese, V.; Paul, R. R.; Jose, A.; Sinu, C.
R.; Menon, R. S. Org. Lett. 2010, 12, 2653.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
ortiInfogrmoaitn
S
u
p
p
ortioInfgrmoaitn
(8) Chiang, P.-C.; Bode, J. W. Org. Lett. 2011, 13, 2422.
(9) Yang, W.; Gou, G.-Z.; Wang, Y.; Fu, W.-F. RSC Adv. 2013, 3, 6334.
(10) Möhlmann, L.; Ludwig, S.; Blechert, S. Beilstein J. Org. Chem.
2013, 9, 602.
References
(11) For selected work on NHC-catalyzed reactions from our group,
see: (a) Bhaumik, A.; Verma, R. S.; Tiwari, B. Org. Lett. 2017, 19,
444. (b) Zhang, J.; Xing, C.; Tiwari, B.; Chi, Y. R. J. Am. Chem. Soc.
2013, 135, 8113. (c) Chen, S.; Hao, L.; Zhang, Y.; Tiwari, B.; Chi,
Y. R. Org. Lett. 2013, 15, 5822. (d) Lv, H.; Tiwari, B.; Mo, J.; Xing,
C.; Chi, Y. R. Org. Lett. 2012, 14, 5412. (e) Jiang, K.; Tiwari, B.;
Chi, Y. R. Org. Lett. 2012, 14, 2382.
(12) For characterization/analytical data of the products, see:
(a) Jiang, X.; Ma, S. Synthesis 2018, 50, 1629. (b) Wu, F. P.; Peng,
J. B.; Meng, L. S.; Qi, X.; Wu, X. F. ChemCatChem 2017, 9, 3121.
(c) Hazra, S.; Deb, M.; Elias, A. J. Green Chem. 2017, 19, 5548.
(d) Zheng, R.; Zhou, Q.; Gu, H.; Jiang, H.; Wu, J.; Jin, Z.; Han, D.;
Dai, G.; Chen, R. Tetrahedron Lett. 2014, 55, 5671. (e) Magoulas,
G.; Papaioannou, D. ARKIVOC 2003, (vi), 213. (f) Nemoto, K.;
Tanaka, S.; Konno, M.; Onozawa, S.; Chiba, M.; Tanaka, Y.;
Sasaki, Y.; Okubo, R.; Hattori, T. Tetrahedron 2016, 72, 734.
(g) Nagalakshmi, K.; Diwakar, B. S.; Govindh, B.; Reddy, P. G.;
Venu, R.; Bhargavi, I.; Devi, T. J. P.; Murthy, Y. L. N.; Siddaiah, V.
Asian J. Chem. 2017, 29, 1561. (h) Concellon, J. M.; Rodriguez-
Solla, H.; Diaz, P. J. Org. Chem. 2007, 72, 7974.
(1) (a) Qiu, J. C.; Pradhan, P. P.; Blanck, N. B.; Bobbitt, J. M.; Bailey,
W. F. Org. Lett. 2012, 14, 350. (b) Ren, Q.-G.; Chen, S.-Y.; Zhou,
X.-T.; Ji, H.-B. Bioorg. Med. Chem. 2010, 18, 8144. (c) Smith, M.
B.; March, J. March’s Advanced Organic Chemistry: Reactions,
Mechanisms and Structure; John Wiley & Sons: Hoboken, 2007,
6th ed.. (d) Wiles, C.; Watts, P.; Haswell, S. J. Tetrahedron Lett.
2006, 47, 5261. (e) Hunsen, M. J. Fluorine Chem. 2005, 126,
1356. (f) Hunsen, M. Synthesis 2005, 2487. (g) Travis, B. R.;
Sivakumar, M. G.; Hollist, O.; Borhan, B. Org. Lett. 2003, 5, 1031.
(h) Mahmood, A.; Robinson, G. E.; Powell, L. Org. Process Res.
Dev. 1999, 3, 363. (i) Jefford, C. W.; Wang, Y. J. Chem. Soc., Chem.
Commun. 1988, 634. (j) Sam, D. J.; Simmons, H. F. J. Am. Chem.
Soc. 1972, 94, 4024.
(2) (a) Yu, H.; Ru, S.; Dai, G.; Zhai, Y.; Lin, H.; Han, S.; Wei, Y. Angew.
Chem. Int. Ed. 2017, 56, 3867. (b) Zhang, Y.; Cheng, Y.; Cai, H.;
He, S.; Shan, Q.; Zhao, H.; Chen, Y.; Wang, B. Green Chem. 2017,
19, 5708. (c) Liu, M.; Li, C.-J. Angew. Chem. Int. Ed. 2016, 55,
10806. (d) Brewster, P. T.; Goldberg, M. J.; Tran, C. J.; Heinekey,
M. D. ACS Catal. 2016, 6, 6302. (e) Han, L.; Xing, P.; Jiang, B. Org.
Lett. 2014, 16, 3428. (f) Mallat, T.; Baiker, A. Chem. Rev. 2004,
104, 3037. (g) Besson, M.; Gallezot, P. Catal. Today 2000, 57, 127.
© Georg Thieme Verlag Stuttgart · New York — Synthesis 2018, 50, A–E