Please do not adjust margins
Green Chemistry
Page 4 of 5
ARTICLE
Journal Name
In summary, we described here that the pure inorganic ligand 12. A. Itoh, S. Hashimoto, K. Kuwabara, T. Kodama, Y. Masaki.
supported chromium catalyst 1 can promote the direct oxidative
acidification of a variety of alcohols in the presence ofCO2 as green 13. T. Iwahama, Y. Yoshino, T. Keitoku, S. Sakaguchi, Y. Ishii. J.Org.
promoter. Both oxidation of aromatic and aliphatic alcohols Chem. 2000, 65, 6502.
proceed quite smoothly under mild conditions, affording the 14. Y. M. A. Yamada, T. Arakawa, H. Hocke, Y. Uozumi. Angew.
corresponding carboxylic acid products very efficiently. The Chem., Int. Ed. 2007, 46, 704-706.
chromium catalyst is stable and recyclable, and can be easily 15. X. Jiang, J. Zhang and S. Ma, J. Am. Chem. Soc.,2016, 138, 8344-
prepared by a simple one-step synthesis from simple inorganic 8347.
metal salts. Furthermore, the catalysis is achieved high efficiently in 16. a) N. Mizuno, K.Kamata. Coord. Chem. Rev. 2011, 255,2358-
Green Chem. 2005, 7, 830.
DOI: 10.1039/D0GC00388C
the absence of any organic ligands. We envision that this simple,
effective and environmentally benign methodology can be
potentially used for various synthetic procedures.
2370. b) D.L.Long, R.Tsunashima, L.Cronin, Angew. Chem.
Int.Ed. 2010, 49, 1736-1739. c) C. L.Hill, In Comprehensive
Coordination Chemistry-II: From Biology to Nanotechnology;
Wedd, A. G., Ed., Elsevier Ltd.: Oxford, UK, 2004, 4, 679-759. d)
A.Müller, P.Kögerler, A. W. M.Dress,Coord.Chem.Rev.2001,
222, 193-218. e) J. T.Rhule,C. L. Hill, D. A.Judd,Chem. Rev.1998,
98, 327-357. f) M. T.Pope, A.Müller,Angew. Chem. Int.
Ed.1991,30, 34-48.
Conflicts of interest
There are no conflicts of interest to declare.
Acknowledgements
17. a)Y.Kikukawa, K.Yamaguchi, N.Mizuno, Angew. Chem. Int. Ed.
2010, 49, 6096-6100.b)R.Ben-Daniel, P.Alsters, R.Neumann, J.
Org. Chem.2001,66, 8650-8653. c) I. A.Weinstock, E.
M.G.Barbuzzi, M. W.Wemple, J. J.Cowan, R. S. Reiner, D.
M.Sonnen, R. A.Heintz, J. S.Bond, C. L.Hill, Nature. 2001, 414,
191-195.
18. a)Y. Liu, S.-F. Zhao, S.-X. Guo, A. M. Bond, J. Zhang, J. Am.
Chem. Soc.2016, 138, 2617-2628.b)S.S.Wang, G.Y.Yang, Chem.
Rev.2015,115, 4893–4962. c)B. B.Sarma, I.Efremenko, R.
Neumann, J. Am. Chem. Soc.2015, 137, 5916−5922. d)C. Zou, Z.
Zhang, X. Xu, Q. Gong, J. Li, C. Wu, J. Am. Chem. Soc.2012, 134,
87−90. e)K.Kamata, K.Yonehara, Y. Nakagawa, K. Uehara, N.
Mizuno, Nat. Chem.2010, 2, 478-483.
This work was supported by the National Natural Science
Foundation of China (Nos. 21871183, 21971134, 21631007,
21471087, and 21225103), Doctoral Fund of Ministry of Education
of China No. 20130002110042, Tsinghua University Initiative
Foundation Research Program No. 20131089204 and the State Key
Laboratory of Natural and Biomimetic Drugs K20160202. The start-
up fund of the Shanghai Institute of Technology is also gratefully
acknowledged.
Notes and references
1. E.Balaraman, E. Khaskin, G. Leitus, D. Milstein. Nat. Chem. 2013,
5, 122-125.
2. A. Abiko, J. C. Roberts, T.Takemasa, S. Masamune,Tetrahedron
Lett.1986, 27, 4537-4540.
3. J. K.Thottathil, J. L.Moniot, R. H.Mueller, M. K. Y. Wong; T. P.
Kissick.J. Org. Chem.1986, 51, 3140-3143.
4. a) L. Zhang,Z.Wu,N. C.Nelson, A. D.Sadow, I. I.Slowing, S.
H.Overbury.ACSCatal. 2015, 5, 6426−6435. b) M. B.Ansari, S.-
E.Park.Energy Environ. Sci. 2012, 5, 9419−9437. c) P.Hirapara,
D.Riemer, N.Hazra, J.Gajera, M.Finger, S.Das.Green Chem.
2017, 19, 5356−5360. d) Y.Sugawara, W.Yamada, S.Yoshida,
T.Ikeno, T.Yamada.J. Am. Chem. Soc. 2007, 129, 12902−12903.
e)D. Riemer, B. Mandaviya, W. Schilling, A. C. Götz, Torben
Kühl,M. Finger, S. Das. ACS Catal. 2018, 8, 3030−3034.
5. a) B. L. Ryland, S .S. Stahl. Angew. Chem., Int. Ed. 2014,53,
8824-8832; b) Q. Cao, L. M. Dornan, L. Rogan, N. L. Hughes, M.
L. Muldoon. Chem. Commun. 2014, 50, 4524-4543. c) J. Piera, J.
E. Bäckvall. Angew. Chem. Int. Ed. 2008, 47, 3506. d) A. E. J. de
Nooy, A. C. Besemer; H. van Bekkum. Synthesis.1996, 1996,
1153 and references therein. e) R. A. Sheldon, I. W. C. E.
Arends. Adv. Synth. Catal. 2004, 346, 1051-1071.
19. a) Jr. H. T. Evans, J. Am. Chem. Soc.1948, 70, 1291-1292. b) J.
S.Anderson, Nature. 1937, 140, 850.
20. a)Z.Wei,S.Ru,Q.Zhao, H. Yu, G. Zhang; Y. Wei, Green Chem.,
2019, 21, 4069–4075.b) M. Zhang, Y. Zhai, S. Ru, D. Zang, S.
Han, H. Yu, Y. Wei, Chem. Commun.2018, 54, 10164-10167. c)
H. Yu, S. Ru, G. Y. Dai, Y. Y. Zhai, H. L. Lin, S. Han, Y. G. Wei,
Angew. Chem. Int. Ed. 2017, 56, 3867-3871.d) H. Yu, Y. Zhai, G.
Dai, S. Ru, S. Han, Y. Wei, Chem. - Eur. J. 2017, 23, 13883-
13887.
21. H. Yu, Z. Wu, Z. Wei, Y. Zhai, S. Ru, Q. Zhao, J. Wang, S. Han Y.
Wei, Commun. Chem. 2019,2,15.
22. N.Mizuno, M.Misono, Y. Nishiyama, Y. Seki, I.Kiyoto, C. Nozaki.
Res. Chem. Intermed. 2000, 26, 193.
23. F. A. Cotton, G. Wilkinson, C. A. Murillo, Advanced Inorganic
Chemistry 6thEd.JohnWiley,NewYork,1999.
24. a) I. Bauer, H. J. Knölker, Chem. Rev. 2015, 115, 3170-3387. b)
J. I. Padrón, V. S. Martín, Iron Catalysis. Springer Berlin
Heidelberg, 2011, 1-26. c) C. Bolm, J. Legros, P. J. Le, L. Zani,
Chem. Rev. 2005,36, 6217-6254. d) P. K. Sharma, R.
Ed. 2004, 43, 1129-1132.
6. a) O. Dalmer, K. Heyns. U.S. Pat. 1940, 2 (190), 377. b) K. Heyns.
Lieb. Ann. Chem. 1947, 558, 177.
7. L. Han, P. Xing, B. Jiang. Org. Lett. 2014, 16, 3428-3433.
8. B. N. Zope, D. D. Hibbitts, M. Neurock, R. J. Davis. Science. 2010,
330, 74-78.
9. B. P. Buffin, J. P. Clarkson, N. L. Belitz, A. J. Mol. Kundu. Catal. A:
Chem. 2005, 225, 111-116.
10. Z. H. Zhang, J. D. Zhen, B. Liu, K. L. Lv, K. J. Deng. Green Chem.
2015, 17, 1308-1311.
11. F. Kerdi, H. A. Rass, C. Pinel, M. Besson, G. Peru, B. Leger, S. Rio,
E. Monflier, A. Ponchel. Appl. Catal. 2015, 506, 206.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins