F. Gallou et al. / Tetrahedron Letters 49 (2008) 5024–5027
5027
(
2
entries 22–24) gave modest to good yields (yields ranging from
8. Caron, S.; Do, N. M. Synlett 2004, 1440.
9. Merrill, R. E.; Negishi, E. J. Org. Chem. 1974, 39, 3452.
1
1% to 64%) in addition to high selectivity.17 In our hands, sodium
0. Formation of Wurtz-type coupling by-products is well-precedented and results
from the presence of the alkyl bromide cogenerated in the process. In our
study, we found that the amount of these side-products was mostly a function
of the temperature. The reduced aryl by-product arises from proton abstraction
on the alkyl bromide via b-elimination. Recourse to tBuLi would completely
avoid its formation, but it is not an option for large-scale applications. see, for
example: Bailey, W. F.; Luderer, M. R.; Jordan, K. P. J. Org. Chem. 2006, 71, 2825–
hydride appeared to be a good sacrificial base to sequester the
acidic proton. Finally, the bromo-methylbenzoate (entries 25–27)
and the bromobenzonitrile (entries 28–30) series gave no product,
presumably due to the incompatibility of the alkyl lithium with the
functional groups.
In summary, we have developed a selective and practical net
bromine–magnesium exchange process under non-cryogenic con-
ditions by a simple modification of an existing protocol.1 The lith-
ium triarylmagnesiate complex formed allows for various types of
functionalization and more elaborate cross-coupling.18 Overall, no
migration to an extent of more than 0.5% was observed in all our
substrates, which compares well to the selectivity observed with
2828. As an alternative, the branched iPrLi offers relatively similar advantages
and is therefore preferred for such applications.
11. Careful monitoring of the purity profile in the previously described entries is
9
summarized in the table below (see structures 3–8 in the text).
Entry Conditions Reactant Product
By-products
T
t
1
2
3
4
5
6
7
8
(
°C)
(h)
6
lithium trialkylmagnesiate complexes. The method is particularly
3
4
5
6
7
8
20
20
20
20
20
20
24
24
24
24
24
24
2.3
3.6
5.4
11.1
6.8
13.5
50.9
75.3
16.3
50.8
65.0
<0.1 <0.1
0.4 79.9 1.2 <0.1
0.5 41.7 1.0 <0.1
0.8 14.6 1.0 <0.1
suitable for poorly reactive aryl bromides but suffers from a poorer
substrate scope as expected from the presence of a highly reactive
alkyllithium and a functionalized aryl bromide at temperatures
above 0 °C, in addition to modest to mediocre efficiency in the case
of the ortho substituted substrates. The simplicity of the method
nevertheless represents a significant improvement over current
methodology and is especially advantageous for large-scale
synthesis.
<0.1
<0.1
0.4
0.3
<0.1 <0.1
23.8 <0.1
16.1 <0.1
1.5 65.8 1.2 <0.1
3.7
2.8
5.4 5.8 <0.1
3.2 4.0 <0.1
5.8
7
8
0–5
0–5
2
2
2.8
1.8
80.4
92.2
8.6 <0.1
0.9 <0.1 <0.1
0.4
1.9 2.9 <0.1
1.1 0.9 <0.1
Results reported in HPLC Area % at 210 nm.
Limit of quantitation: 0.1%.
References and notes
1
2. For in situ trapping of organolithiated species, see, for example: Kristensen, J.;
Lysén, M.; Vedsø, P.; Begtrup, M. Org. Lett. 2001, 3, 1435–1437; ElSheikh, S.;
Schmalz, H.-G. Curr. Opin. Drug Discovery Dev. 2004, 7, 882–895.
1
2
3
.
.
.
For a recent review, see: Knochel, P.; Dohle, W.; Gommermann, N.; Kneisel, F.
F.; Kopp, F.; Korn, T.; Sapountzis, I.; Vu, V. A. Angew. Chem., Int. Ed. 2003, 42,
4
302–4320.
1
3. The current process indeed avoids forming
a highly reactive lithium
(a) Silverman, G. S.; Rakita, P. E. Handbook of Grignard-Reagents; Marcel Dekker:
New York, 1996; (b) Richey, H. G., Jr. Grignard Reagents: New developments;
Wiley & Sons: Chichester, UK, 2000.
(a) Clayden, J. P. Organolithiums: Selectivity for Synthesis; Elsevier Science Ltd:
Oxford, UK, 2002; (b) Bailey, W. F.; Rathmann, T. In Process Chemistry in the
Pharmaceutical Industry; Gadamasetti, K., Braish, T., Eds.; CRC Press LLC: Boca
Raton, Fla, 2008; pp 205–216.
trialkylmagnesiate species that contains a high energy potential and can
react violently and generate volatile organic by-products upon quenching.
Instead of this lithium trialkylmagnesiate, a lithium triarylmagnesiate is
formed directly under dosage control and would give rise to less volatile
aromatic species. Hence, an easier control upon scale-up and a more desirable
situation that avoids gas evolution. Other general safety concerns have been
discussed in a recent publication, see: Hauk, D.; Lang, S.; Murso, A. Org. Process
Res. Dev. 2006, 10, 733–738.
4
5
.
.
Mongin, F.; Marzi, E.; Schlosser, M. Eur. J. Org. Chem. 2001, 14, 2771–2777.
(a) Krasovskiy, A.; Straub, B. F.; Knochel, P. Angew. Chem., Int. Ed. 2006, 45, 159–
1
1
1
1
1
4. (a) Lau, S. Y. W.; Hughes, G.; O’Shea, P. D.; Davies, I. W. Org. Lett. 2007, 9, 2239–
1
62; (b) Krasovskiy, A.; Knochel, P. Angew. Chem., Int. Ed. 2004, 43, 3333–3336;
2
242; (b) Dai, C.; Fu, G. C. J. Am. Chem. Soc. 2001, 123, 2719–2724.
5. Menzel, K.; Mills, P. M.; Frantz, D. E.; Nelson, T. D.; Kress, M. H. Tetrahedron Lett.
008, 49, 415–418. and references cited therein.
(
c) Abarbri, M.; Thibonnet, J.; Bérillon, L.; Dehmel, F.; Rottländer, M.; Knochel, P.
J. Org. Chem. 2000, 65, 4618–4634; (d) Rottländer, M.; Boymond, L.; Bérillon, L.;
Leprêtre, A.; Varchi, G.; Avolio, S.; Laaziri, H.; Quéguiner, G.; Ricci, A.; Cahiez, G.;
Knochel, P. Chem. Eur. J. 2000, 6, 767–770; (e) Abarbri, M.; Dehmel, F.; Knochel,
P. Tetrahedron Lett. 1999, 40, 7449–7453; (f) Boudier, A.; Bromm, L. O.; Lotz, M.;
Knochel, P. Angew. Chem., Int. Ed. 2000, 39, 4414–4435.
2
6. Leazer, J. L., Jr.; Cvetovich, R.; Tsay, F.-R.; Dolling, U.; Vickery, T.; Bachert, D. J.
Org. Chem. 2003, 68, 3695–3698.
7. Kato, S.; Nonoyama, N.; Tomimoto, K.; Mase, T. Tetrahedron Lett. 2002, 43,
7315–7317.
6
.
(a) Inoue, A.; Kitagawa, K.; Shinokubo, H.; Oshima, K. J. Org. Chem. 2001, 66,
8. For the use of organozinc in the cross-coupling: (a) Negishi, E.; King, A. O.;
Okukado, N. J. Org. Chem. 1977, 42, 1821–1823; (b) Negishi, E.; Van Horn, D. E. J.
Am. Chem. Soc. 1977, 99, 3168–3170. For the use of organocopper in the cross-
coupling: (c) Fanta, P. E. Chem. Rev. 1964, 64, 613–632; (d) Jabri, N.; Alexakis, N.
J. A.; Normant, J. F. Tetrahedron Lett. 1981, 22, 959–962. For the use of
organoboron in the cross-coupling: (e) Miyaura, N.; Suzuki, A. Chem. Rev. 1995,
4
333–4339; (b) Kitagawa, K.; Inoue, A.; Shinokubo, H.; Oshima, K. Angew.
Chem., Int. Ed. 2000, 39, 2481–2483; (c) Iida, T.; Wada, T.; Tomimoto, K.; Mase,
T. Tetrahedron Lett. 2001, 42, 4841–4844. For recent applications of
trialkylmagnesiates, see: (d) Dolman, S. J.; Gosselin, F.; O’Shea, P. D.; Davies,
I. W. Tetrahedron 2006, 62, 5092–5098; (e) Higuchi, T.; Ohmori, K.; Suzuki, K.
Chem. Lett. 2006, 35, 1006–1008; (f) Mongin, F.; Bucher, A.; Bazureau, J. P.;
Bayh, O.; Awad, H.; Trécourt, F. Tetrahedron Lett. 2005, 46, 7989–7992; (g)
Awad, H.; Mongin, F.; Trécourt, F.; Quéguiner, G.; Marsais, F.; Blanco, F.; Abarca,
B.; Ballesteros, R. Tetrahedron Lett. 2004, 45, 6697–6701; (h) Ito, S.; Kubo, T.;
Morita, N.; Matsui, Y.; Watanabe, T.; Ohta, A.; Fujimori, K.; Murafuji, T.;
Sugihara, Y.; Tajiri, A. Tetrahedron Lett. 2004, 45, 2891–2894; (i) Farkas, J., Jr.;
Stoudt, S. J.; Hanawalt, E. M.; Pajerski, A. D.; Richey, H. G., Jr. Organometallics
9
5, 2457; (f) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 4176–4211.
For the use of organolithium in the cross-coupling: (g) Murahashi, S.;
Yamamura, M.; Yanagisawa, K.; Mita, N.; Kondo, K. J. Org. Chem. 1979, 44,
2408–2417; For the use of organomagnesium in the cross-coupling: (h)
Yamamura, M.; Moritani, I.; Murahashi, S.-I. J. Organomet. Chem. 1975, 91, C39–
C42. For the use of organostannan in the cross-coupling: (i) Stille, J. K. Angew.
Chem., Int. Ed. Engl. 1986, 25, 508–524; For the use of organosilicon in the cross-
coupling: (j) Hatanaka, Y.; Hiyama, T. Synlett 1991, 845–853.
2
004, 23, 423–427; (j) Dumouchel, S.; Mongin, F.; Trécourt, F.; Quéguiner, G.
Tetrahedron Lett. 2003, 44, 3877–3880; (k) Dumouchel, S.; Mongin, F.; Trécourt,
F.; Quéguiner, G. Tetrahedron 2003, 59, 8629–8640; (l) Dumouchel, S.; Mongin,
F.; Trécourt, F.; Quéguiner, G. Tetrahedron Lett. 2003, 44, 2033–2035; (m) Mase,
T.; Houpis, I. N.; Akao, A.; Dorziotis, I.; Emerson, K.; Hoang, T.; Iida, T.; Itoh, T.;
Kamei, K.; Kato, S.; Kato, Y.; Kawasaki, M.; Lang, F.; Lee, J.; Lynch, J.; Maligres,
P.; Molina, A.; Nemoto, T.; Okada, S.; Reamer, R.; Song, J. Z.; Tschaen, D.; Wada,
T.; Zewge, D.; Volante, R. P.; Reider, P. J.; Tomimoto, K. J. Org. Chem. 2001, 66,
19. General procedure: To a solution of aryl bromide (12 mmol, 1.2 equiv) in dry
THF (12 mL) at 0 °C was added a 2 M solution of iPrMgCl in THF (5 mmol,
0.5 equiv) in 5 min. The clear solution was stirred at that temperature for an
additional 10 min, and a 30% solution of nBuLi in hexanes(10 mmol, 1.0 equiv)
was added dropwise in 10 min, while maintaining the temperature below 5 °C.
The resulting mixture was stirred at that temperature for 1 h, cooled to ꢀ10 °C,
and dry DMF (13 mmol, 1.3 equiv) in dry THF (13 mL) was added dropwise in
6
775–6786; See also early reactivity investigations of organo magnesiates: (n)
10 min. The resulting mixture was warmed to rt in 1 h, and added to a 0.5 M
Richey, H. G., Jr.; King, B. A. J. Am. Chem. Soc. 1982, 104, 4672–4674.
The enhanced basic character of organolithium species in THF compared to
other solvents such as diethyl ether or TBME makes them more susceptible to
isomerization. Such isomerizations are less likely to be observed in diethyl
ether where the organolithium species are more aggregated and thus rendered
less reactive.
citric acid solution at rt. After 10 min stirring, the phases were separated and
the water phase was extracted one additional time with toluene. The combined
organic phases were concentrated and water was removed azeotropically with
toluene to obtain the desired aldehyde. All benzaldehyde products were
compared to commercially available reference samples.
7
.