784
G. Zhang et al.
Letter
Synlett
Res. 2006, 39, 221. (e) Zhang, G. F.; Wang, Y.; Wen, X.; Ding, C.
R.; Li, Y. Chem. Commun. 2012, 48, 2979. (f) Liu, C.; Tang, S.; Lei,
A. Chem. Commun. 2013, 49, 1324.
ACS National Meeting & Exposition, Dallas, TX, March 16–21,
2014; American Chemical Society: Washington DC, 2014, Abstr.
360.
(6) (a) Guan, B. T.; Xing, D.; Cai, G. X.; Wan, X. B.; Yu, N.; Fang, Z.;
Yang, L. P.; Shi, Z. J. J. Am. Chem. Soc. 2005, 127, 18004.
(b) Miyamura, H.; Matsubara, R.; Miyazaki, Y.; Kobayashi, S.
Angew. Chem. Int. Ed. 2007, 46, 4151. (c) Karimi, B.; Esfahani, F.
K. Adv. Synth. Catal. 2012, 354, 1319.
(7) (a) Fujita, K.; Yoshida, T.; Imori, Y.; Yamaguchi, R. Org. Lett.
2011, 13, 2278. (b) Kawahara, R.; Fujita, K.; Yamaguchi, R. J. Am.
Chem. Soc. 2012, 134, 3643.
(8) (a) Liu, X. L.; Xia, Q. Q.; Zhang, Y. J.; Chen, C. Y.; Chen, W. Z. J.
Org. Chem. 2013, 78, 8531. (b) Allen, S. E.; Walvoord, R. R.;
Salinas, R. P.; Kozlowski, M. C. Chem. Rev. 2013, 113, 6234.
(c) Jiang, N.; Ragauskas, A. J. Org. Lett. 2005, 7, 3689. (d) Yang, G.;
Zhu, W.; Zhang, P.; Xue, H.; Wang, W.; Tian, J.; Song, M. Adv.
Synth. Catal. 2008, 350, 542. (e) Jiang, N.; Vinci, D.; Liotta, C. L.;
Eckert, C. A.; Ragauskas, A. J. Ind. Eng. Chem. Res. 2008, 47, 627.
(f) Jiang, N.; Ragauskas, A. J. ChemSusChem 2008, 1, 823.
(g) Liang, L.; Rao, G.; Sun, H. L.; Zhang, J. L. Adv. Synth. Catal.
2010, 352, 2371. (h) Dhakshinamoorthy, A.; Alvaro, M.; Garcia,
H. ACS Catal. 2011, 1, 48. (i) Mase, N.; Mizumori, T.; Tatemoto, Y.
Chem. Commun. 2011, 47, 2086.
(9) (a) Markó, I. E.; Giles, P. R.; Tsukazaki, M.; Chellé, R. I.; Gautier,
A.; Brown, S. M.; Urch, C. J. Science 1996, 274, 2044. (b) Markó, I.
E.; Giles, P. R.; Tsukazaki, M.; Chellé, R. I.; Gautier, A.; Brown, S.
M.; Urch, C. J. J. Org. Chem. 1999, 64, 2433.
(10) (a) Gamez, P.; Arends, I. W. C. E.; Reedijka, J.; Sheldon, R. A.
Chem. Commun. 2003, 2414. (b) Gamez, P.; Arends, I. W. C. E.;
Sheldon, R. A.; Reedijka, J. Adv. Synth. Catal. 2004, 346, 805.
(11) (a) Hoover, J. M.; Stahl, S. S. J. Am. Chem. Soc. 2011, 133, 16901.
(b) Hill, N. J.; Hoover, J. M.; Stahl, S. S. J. Chem. Educ. 2013, 90,
102. (c) Steves, J. E.; Stahl, S. S. J. Am. Chem. Soc. 2013, 135,
15742. (d) Greene, J. F.; Hoover, J. M.; Mannel, D. S.; Root, T. W.;
Stahl, S. S. Org. Process Res. Dev. 2013, 17, 1247.
(12) (a) Velusamy, S.; Srinivasan, A.; Punniyamurthy, T. Tetrahedron
Lett. 2006, 47, 923. (b) Sarmah, P.; Das, B. K.; Phukan, P. Catal.
Commun. 2010, 11, 932.
(13) For selected examples of amino acids as ligands to promote
cross-couplings reaction, see: (a) Zhang, H.; Cai, Q.; Ma, D. W. J.
Org. Chem. 2005, 70, 5164. (b) Xie, X. A.; Chen, Y.; Ma, D. W. J.
Am. Chem. Soc. 2006, 128, 16050. (c) Ma, D. W.; Cai, Q. Acc.
Chem. Res. 2008, 41, 1450. (d) Grauer, A.; Späth, A.; Ma, D. W.;
König, B. Chem. Asian J. 2009, 4, 1134.
(16) Zhang, G. F.; Han, X. W.; Luan, Y. X.; Wang, Y.; Wen, X.; Ding, C.
R. Chem. Commun. 2013, 49, 7908.
(17) For selected reviews of aqueous reaction, see: (a) Kärkäs, M. D.;
Johnston, E. V.; Verho, O.; Åkermark, B. Acc. Chem. Res. 2014, 47,
100. (b) Simon, M. O.; Li, C. J. Chem. Soc. Rev. 2012, 41, 1415.
(c) Sheldon, R. A. Chem. Soc. Rev. 2012, 41, 1437. (d) Li, C. J.;
Chan, T. H. Comprehensive Organic Reactions in Aqueous Media;
Wiley: New York, 2007, 2nd ed.. (e) Li, C. J. Acc. Chem. Res. 2010,
43, 581. (f) Wagner, J. R.; Cadet, J. Acc. Chem. Res. 2010, 43, 564.
(g) Li, C. J. Chem. Rev. 2005, 105, 3095. (h) Chanda, A.; Fokin, V.
V. Chem. Rev. 2009, 109, 725. (i) Franzén, R.; Xu, Y. J. Can. J.
Chem. 2005, 83, 266. (j) Liu, N.; Liu, C.; Jin, Z. L. Chin. J. Org.
Chem. 2012, 32, 860.
(18) For selected examples of aerobic aqueous oxidation of alcohols,
see: (a) Figiel, P. J.; Leskelä, M.; Repo, T. Adv. Synth. Catal. 2007,
349, 1173. (b) Figiel, P. J.; Sibaouih, A.; Ahmad, J. U.; Nieger, M.;
Räisänen, M. T.; Leskelä, M.; Repo, T. Adv. Synth. Catal. 2009,
351, 2625. (c) Figiel, P. J.; Kirillov, A. M.; Karabach, Y. Y.;
Kopylovich, M. N.; Pomberio, A. J. L. J. Mol. Catal. A: Chem. 2009,
305, 178. (d) Zhang, G. F.; Han, X. W.; Luan, Y. X.; Wang, Y.; Wen,
X.; Xu, L.; Ding, C. R.; Gao, J. R. RSC Adv. 2013, 3, 19255. (e) Chen,
C.; Liu, B.; Chen, W. Z. Synthesis 2013, 45, 3387. (f) Lipshutz, B.
H.; Hageman, M.; Fennewald, J. C.; Linstadt, R.; Slack, E.;
Voigtritter, K. Chem. Commun. 2014, 50, 11378. (g) Miao, C. X.;
Wang, J. Q.; Yu, B.; Cheng, W. G.; Sun, J.; Chanfreau, S.; He, L. N.;
Zhang, S. J. Chem. Commun. 2011, 47, 2697.
(19) General Procedures for the Copper-Catalyzed Primary Ben-
zylic Alcohol Oxidation under Air in Water (p-Methylbenzyl
Alcohol)
A mixture of p-methylbenzyl alcohol (1.0 mmol), N-phenylgly-
cine (0.0076 g, 0.05 mmol), CuBr2 (0.0112 g, 0.05 mmol),
Na2CO3 (0.1060 g, 1.0 mmol), TEMPO (0.0078 g, 0.05 mmol),
H2O (3.0 mL) were added to a 100 mL Schlenk tube, which was
vigorously stirred in air under reflux for 0.5 h. After the reac-
tion, the product was extracted with CH2Cl2 (3 × 2.0 mL). The
combined organic phase was washed with H2O (3.0 mL) and
dried over anhydrous MgSO4. After concentration under
vacuum, the residue was purified by column chromatography to
1
afford p-methylbenzaldehyde.Isolated yield: 0.1080 g (90%). H
NMR (500 MHz, CDCl3): δ = 2.38(s, 3 H), 7.27 (d, J = 4.3 Hz, 2 H),
7.73 (d, J = 4.0 Hz, 2 H), 9.91 (s, 1 H). 13C NMR (125 MHz, CDCl3):
δ = 21.5, 129.4, 129.5, 134.0, 145.2, 191.6.
(14) For selected examples of amino acids as ligands to promote C–H
activation, see: (a) Engle, K. M.; Wang, D. H.; Yu, J. Q. J. Am.
Chem. Soc. 2010, 132, 14137. (b) Engle, K. M.; Thuy-Boun, P. S.;
Dang, M.; Yu, J. Q. J. Am. Chem. Soc. 2011, 133, 18183. (c) Engle,
K. M.; Mei, T. S. M.; Wasa, Yu. J. Q. Acc. Chem. Res. 2012, 45, 788.
(15) For selected examples of amino acids as ligands to promote
copper-catalyzed oxidation, see: (a) Chong, H. S.; Ma, X.; Lee,
H.; Bui, P.; Song, H. A.; Birch, N. In Abstracts of Papers, 235th ACS
National Meeting, New Orleans, LA, April 6–10, 2008; American
Chemical Society: Washington DC, 2008, Abstr. 323. (b) Chong,
H. S.; Song, H. A.; Lee, T.; Cheng, D. F.; Lee, H.; Ma, X. In Abstracts
of Papers 235th ACS National Meeting, New Orleans, LA, April 6–
10, 2008; American Chemical Society: Washington DC, 2008,
Abstr. 33. (c) Södergren, M. J.; Andersson, P. G. Tetrahedron Lett.
1996, 37, 7577. (d) Li, Q.; Hu, Y. H. In Abstracts of Papers, 247th
(20) General Procedures for Copper-Catalyzed Secondary Alcohol
Oxidation under Reflux in Neat Water (1-Phenethyl Alcohol)
A mixture of 1-phenethyl alcohol (1.0 mmol), N-(phenyl)phe-
nylalanine (0.0241 g, 0.1 mmol), CuBr2 (0.0223 g, 0.1 mmol),
NaOAc (0.1640 g, 2.0 mmol), TEMPO (0.0156 g, 0.1 mmol), and
H2O (3.0 mL) were placed into a 100 mL Schlenk tube, which
was vigorously stirred in air under reflux for 12 h. After the
reaction, the product was extracted with CH2Cl2 (3 × 2.0 mL).
The combined organic phase was washed with H2O (3.0 mL) and
dried over anhydrous MgSO4. After concentration under
vacuum, the residue was purified by column chromatography to
afford acetophenone.Isolated yield: 0.1080 g (90%). 1H NMR
(500 MHz, CDCl3): δ = 2.52 (s, 3 H), 7.40 (t, J = 7.5 Hz, 2 H), 7.51
(t, J = 7.0 Hz, 1 H), 7.91 (d, J = 4.3 Hz, 2 H).13C NMR (125 MHz,
CDCl3): δ = 26.5, 128.2, 128.5, 133.0, 137.1, 198.1.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2015, 26, 779–784