K. Liu et al. / Journal of Catalysis 283 (2011) 68–74
73
contribution to the production of ethylation products, but it is
favorable to the oligomerization of ethylene.
Further studies show that the catalytic performance of MCM-49
zeolite for liquid alkylation of benzene with ethylene can effec-
tively improved by moderate alkali treatment due to the genera-
tion of some pores resembling the surface pockets.
Acknowledgment
We acknowledge the National Basic Research Program of China
(No. 2009CB623501) for financial support.
References
[1] C. Perego, P. Ingallina, Catal. Today 73 (2002) 3.
[2] P. Matias, J.M. Lopes, S. Laforge, P. Magnoux, P.A. Russo, M.M.L. Ribeiro Carrott,
M. Guisnet, F. Ramôa Ribeiro, J. Catal. 259 (2008) 190.
[3] J. Rigoreau, S. Laforge, N. Gnep, M. Guisnet, J. Catal. 236 (2005) 45.
[4] B. Onida, F. Geobaldo, F. Testa, F. Crea, E. Garrone, Micropor. Mesopor. Mater.
30 (1999) 119.
[5] D. Meloni, S. Laforge, D. Martin, M. Guisnet, E. Rombi, V. Solinas, Appl. Catal. A:
Gen. 215 (2001) 55.
Fig. 5. The FT-IR spectra of HM, 0.025AT and 0.3AT in the –OH stretching region.
HM: H-type MCM-49 zeolite. 0.025AT: H-type MCM-49 zeolite alkali-treated in
0.025 N NaOH solution for 15 min at the room temperature. 0.3AT: H-type MCM-49
zeolite alkali-treated in 0.3 N NaOH solution for 120 min at 75 °C.
[6] G.G. Juttu, R.F. Lobo, Micropor. Mesopor. Mater. 40 (2000) 9.
[7] X.D. Sun, Q.X. Wang, L.Y. Xu, S.L. Liu, Catal. Lett. 94 (2004) 75.
[8] P. Wu, T. Komatsu, T. Yashima, Micropor. Mesopor. Mater. 22 (1998) 343.
[9] A. Corma, V. Martínez-Soriab, E. Schnoevelda, J. Catal. 192 (2000) 163.
[10] J. Cheng, T. Degnan, J. Beck, Y. Huang, M. Kalyanaraman, J. Kowalski, C. Loehr,
D. Mazzone, Stud. Surf. Sci. Catal. 121 (1999) 53.
[11] G. Bellussi, G. Pazzuconi, C. Perego, G. Girotti, G. Terzoni, J. Catal. 157 (1995)
227.
[12] S. Lawton, M. Leonowicz, R. Partridge, P. Chu, M. Rubin, Micropor. Mesopor.
Mater. 23 (1998) 109.
[13] A. Corma, C. Corell, J. Pérez-Pariente, Zeolites 15 (1995) 2.
[14] A. Corma, V. Fornés, L. Forni, F. Márquez, J. Martínez-Triguero, D. Moscotti, J.
Catal. 179 (1998) 451.
[15] H. Du, D. Olson, J. Phys. Chem. B 106 (2002) 395.
[16] P. Ayrault, J. Datka, S. Laforge, D. Martin, M. Guisnet, J. Phys. Chem. B 108
(2004) 13755.
[17] S. Laforge, D. Martin, M. Guisnet, Appl. Catal. A: Gen. 268 (2004) 33.
[18] S. Laforge, D. Martin, M. Guisnet, Micropor. Mesopor. Mater. 67 (2004) 235.
[19] S. Laforge, D. Martin, J.L. Paillaud, M. Guisnet, J. Catal. 220 (2003) 92.
[20] S. Lawton, A. Fung, G. Kennedy, L. Alemany, C. Chang, G. Hatzikos, D. Lissy, M.
Rubin, H. Timken, S. Steuernagel, J. Phys. Chem. 100 (1996) 3788.
[21] J. Cheng, C. Smith, D. Walsh, US Patent 5493065, 1996 (to Mobil Oil
Corporation).
[22] P. Matias, J. Lopes, S. Laforge, P. Magnoux, M. Guisnet, F. Ramoa Ribeiro, Appl.
Catal. A: Gen. 351 (2008) 174.
[23] M. Guisnet, P. Ayrault, C. Coutanceau, M. Fernanda Alvarez, J. Datka, J. Chem.
Soc. Faraday Trans. 93 (1997) 1661.
[24] J.M. Bennett, C.D.Chang, S.L. Lawton, M.E., Leonowicz, D.N. Lissy, M.K. Rubin, B.
Cynwyd, US Patent 5236575, 1993 (to Mobil Oil Corporation).
[25] E. Besset, D. Meloni, D. Martin, M. Guisnet, L. Schreyeck. In: B. Delmon, G.F.
Froment (Eds.), Catalyst Deactivation 1999, Proc. 8th Int. Symp., 10–13
October 1999, vol. 126, p. 171.
[26] A. Corma, C. Corell, V. Fornés, W. Kolodziejski, J. Pérez-Pariente, Zeolites 15
(1995) 576.
[27] M. Maache, A. Janin, J.C. Lavalley, J.F. Joly, E. Benazzi, Zeolites 13 (1993) 419.
[28] E.P. Parry, J. Catal. 2 (1963) 371.
ing of sinusoidal pores and supercages in MCM-49 zeolite, there
are also mesopores originating from the aggregation of MCM-49
sheets and extra mesopores introduced in alkali treatment with
certain NaOH solutions. After liquid alkylation of benzene with
ethylene for 12 h, compared with HM, the total coke content of
0.025AT exhibits limited change, and only the proportion of coke
deposited in micropores is a bit higher. The amount of coke over
0.3AT, especially that in micropores, is obviously lower than that
over HM. Moreover, the selectivities of most products with rela-
tively small molecule size are not influenced by the alkali-
treatment process (Table 3), but the selectivity of C10+ aromatics
decreases from 0.57% over HM to only 0.27% over 0.3AT. Since
the mild alkali-treatment process can destroy part of aggregated
mesopores, the coke deposit in the mesopores of 0.025AT
decreases, accompanying with the increase in coke deposition in
micropores. Over 0.3AT, the diffusion condition is improved with
the introduction of mesopores by alkali-treatment, and the diffu-
sion path in the micropores is shortened by desilication [52–54].
Reactions that produce larger molecules such as processes B and
D will be inhibited, resulting in the decrease in the C10+ aromatics
as well as coke deposition in micropores. In conclusion, alkali treat-
ment is an efficient method to improve the catalytic performances
of MCM-49 zeolite by introducing mesopores into the zeolite, as
well as expanding the opening of the supercages.
[29] K. Song, J. Guan, S. Wu, Y. Yang, B. Liu, Q. Kan, Catal. Lett. 126 (2008) 8.
[30] D. Meloni, D. Martin, M. Guisnet, Appl. Catal. A: Gen. 215 (2001) 67.
[31] X. Ren, J. Liang, J. Wang, J. Porous Mater. 13 (2006) 353.
[32] A. Corma, A. Martinez, C. Martinez, Catal. Lett. 28 (1994) 187.
[33] H.J. Jung, S.S. Park, C.H. Shin, Y.K. Park, S.B. Hong, J. Catal. 245 (2007) 65.
[34] G. Sastre, V. Fornes, A. Corma, J. Phys. Chem. B 104 (2000) 4349.
[35] Y. Li, B. Xue, X. He, J. Mol. Catal. A: Chem. 301 (2009) 106.
[36] A. Albuquerque, L. Marchese, L. Lisi, H.O. Pastore, J. Catal. 241 (2006) 367.
[37] A. Corma, A. Martinez, C. Martinez, Appl. Catal. A: Gen. 134 (1996) 169.
[38] E. Roland, P. Kleinschmit, A. Kiss, F. Heindl, US Patent 5223240, 1993, (to
Degussa Aktiengesellschaft, Fed. Rep. of Germany).
[39] H. Darmstadt, C. Roy, S. Kaliaguine, T. Kim, R. Ryoo, Chem. Mater. 15 (2003)
3300.
[40] A. Geatti, M. Lenarda, L. Storaro, R. Ganzerla, M. Perissinotto, J. Mol. Catal. A:
Chem. 121 (1997) 111.
[41] J.P. Lange, A. Gutsze, J. Allgeier, H.G. Karge, Appl. Catal. 45 (1988) 345.
[42] K.A. Becker, H.G. Karge, W.D. Streubel, J. Catal. 28 (1973) 403.
[43] A. Feller, I. Zuazo, A. Guzman, J.O. Barth, J.A. Lercher, J. Catal. 216 (2003) 313.
[44] P.D. Hopkins, J. Catal. 12 (1968) 325.
[45] K. Liu, S. Xie, G. Xu, Y. Li, S. Liu, L. Xu, Appl. Catal. A: Gen. 383 (2010) 102.
[46] L. Mokrzycki, B. Sulikowski, Z. Olejniczak, Catal. Lett. 127 (2009) 296.
[47] L.L. Su, L. Liu, J.Q. Zhang, H.X. Wang, Y.G. Li, W.J. Shen, Y.D. Xu, X.H. Bao, Catal.
Lett. 91 (2003) 155.
4. Conclusions
Through two-step process of precoking and 2, 4-DMQ adsorp-
tion, distributions of acid sites in three different types of pore sys-
tems of MCM-49 zeolite have been determined. The ratio of B acid
sites in the surface pockets, in the supercages and in the sinusoidal
pores is about 1.4:1.2:1.0. Most L acid sites (ca. 73%) exist within
supercages.
Under the selected conditions for the liquid alkylation of
benzene with ethylene, more than 60% of ethylene conversion oc-
curs in the surface pockets, and less than 30% and 10% takes place
in the supercages and the sinusoidal pores, respectively. The roles
of pores have been proposed. The surface pockets are the main
positions for ethylbenzene production, and they also yield more
than half of diethylbenzene. The majority of C10+ aromatics are
produced in the supercages, and coke deposition within the super-
cages is the main reason for the fast deactivation of MCM-49
zeolite at the early reaction stage. The sinusoidal system has a little
[48] Y. Tao, H. Kanoh, L. Abrams, K. Kaneko, Chem. Rev. 106 (2006) 896.