68
MIGA ET AL.
OMA), whereas 76aN gives large amounts of all initial and the Action Concerte´e, France–Poland, the French Ambassy, and the Polish
Science Committee (KBN), Warsaw.
intermediate compounds and (ii) different distributions of
HDN products are observed where ECH + EB are the two
major products for both materials.
REFERENCES
CONCLUSIONS
1. Dje´ga-Mariadassou, G., Boudart, M., Bugli, G., and Sayag, C., Catal.
Lett. 31, 411 (1995).
2. Ribeiro, F. H., Boudart, M., Dalla-Betta, R. A., and Iglesia, E., J. Catal.
130, 498 (1991).
3. Muller, A., Keller, V., Ducros, R., and Maire, G., Catal. Lett. 35, 65
(1995).
There are two ways to design new catalysts or new cata-
lytic functions. The first is to prepare new materials (here
the bulk MoOxNy) or to modify existing catalysts (here a
commercial NiMo-supported catalyst). In hydrotreating,
NiMo-supported catalysts are generally sulfided to proceed
to either the HDN or HDS reaction. The correspond-
ing molybdenum sulfide can activate both H2 and the
N-containing molecules. One of the main properties of sul-
fides, nitrides, and carbides is that they are able to exchange
S, N, or C (7, 22). During HDN over a sulfided molybdenum
catalyst, nitrogen insertion probably occurs. Oxynitrides
and oxycarbides are efficient for activating dihydrogen and
N-containing molecules. Thus, nitridation of a commercial
NiMo-supported catalyst (76aN) can be achieved. Fur-
thermore, bulk MoOxNy and 76a nitrided (76aN) present
metallic and acidic functions. Since the 76aN material
4. Sellem, S., Potvin, C., Manoli, J. M., Contant, R., and Dje´ga-
Mariadassou, G., J. Chem. Soc. Chem. Commun., 359 (1995).
5. Volpe, L., and Boudart, M., J. Solid State Chem. 59, 332 (1985).
6. Ledoux, M. J., Guille, J., and Cuong, P. H., J. Catal. 194, 176
(1988).
7. Kim, H. S., Sayag, C., Bugli, G., Dje´ga-Mariadassou, G., and Boudart,
M., Mat. Res. Sci. Symp. Proc. Series 368, 3 (1995).
8. Gouin, X., Marchand, R., L’Haridon, P., and Laurent, Y., J. Solid
State Chem. 109, 175 (1994).
9. Sayag, C., Bugli, G., Havil, P., and Dje´ga-Mariadassou, G., J. Catal.
167, 372 (1997).
10. Sellem, S., Potvin, C., Manoli, J. M., Maquet, J., and Dje´ga-
Mariadassou, G., Catal. Lett. 41, 89 (1996).
11. Be´cue, T., Manoli, J. M., Potvin, C., and Dje´ga-Mariadassou, G.,
J. Catal. 170, 123 (1997).
contains HZSM-5, its acidity is stronger. Sellem et al. (10) 12. Nagai, M., Kusagaya, T., Miyata, A., and Omi, S., Bull. Soc. Chim.
Belg. 104, Nos. 4–5 (1995).
13. Kaernbach, W., Kisielow, W., Warzecha, L., Miga, K., and Klecan, R.,
Fuel 69, 221 (1990).
14. Abe, H., and Bell, A. T., Catal. Lett. 18, 1 (1993).
showed that, for W2N/EMT, the nitridation step preserved
the activity of the acid sites for isomerization and cracking.
One of the main results of this paper is that route 1 (Fig. 2)
of the HDN of indole is possible over molybdenum oxyni-
tride. This is in good agreement with the work of Abe and
Bell (14), and Li and Lee (23) who performed HDN at
low hydrogen pressure. A low hydrogen pressure does not
thermodynamically favor hydrogenation, and these authors
found a large amount of ethylbenzene, indicating the pos-
sibility of HDN via route 1, as described in our work. This
route does not require the hydrogenating step of indole be-
fore C–N scission, and it is observed even under 9.1 MPa
of hydrogen, as shown here.
15. Bartholomew, C. H., Weatherbee, G. D., and Jarvi, G. A., J. Catal. 60,
257 (1979).
16. Breysse, M., Cattenot, M., Decamp, T., Frety, R., Gachet, C., Lacroix,
M., Leclercq, C., de Mourgues, L., Portefaix, J. L., Vrinat, M., Houari,
M., Grimblot, J., Kasztelan, S., Bonnelle, J. P., Housni, S., Bachelier,
J., and Duchet, J. C., Catal. Today 4, 39 (1988).
17. Suzuki, M., Tsutsumi, K., Takahashi, H., and Saito, Y., Zeolites 9, 98
(1989).
18. Germain, J. E., “Catalytic Conversion of Hydrocarbons,” p. 259.
Academic Press, New York, 1969.
19. Olive´, J. L., Biyoko, S., Moulinas, C., and Geneste, P., Appl. Catal. 19,
165 (1985).
20. Jian, M., Kapteijn, F., and Prins, R., J. Catal. 168, 491 (1997).
21. Perot, G., Catal. Today 10, 447 (1991).
ACKNOWLEDGMENTS
22. Marchand, R. J., Gouin, X., Tessier, F., and Laurent, Y., Proc. Mat.
Res. Soc. Symp. 368, 15 (1994).
23. Li, S., and Lee, J. S., J. Catal. 173, 134 (1998).
This work was supported by the International Program for Scientific
Cooperation, France–Poland, PICS 508, CNRS/ADEME/MAE, and by