The Journal of Organic Chemistry
Featured Article
1
780. Similarly, for hydroaromatic radicals, see: (c) Manka, M. J.;
REFERENCES
■
Stein, S. E. J. Phys. Chem. 1984, 88, 5914.
19) The reduction rate in THF that had been taken from a THF-
(
1) Earliest observations: (a) Van der Kerk, G.; Noltes, J.; Luijten, J.
J. Appl. Chem. 1957, 7, 356. Scope, selectivity, and mechanism:
(
drying still was anomalously slow. It was discovered by GC that this
sample contained a trace of the benzophenone dryness indicator!
(
solvent: (a) Howard, J.; Ingold, K. U. Can. J. Chem. 1964, 42, 1044.
This is especially true for di-tert-butyl hyponitrite (b) Kiefer, H. R.;
Traylor, T. G. J. Am. Chem. Soc. 1967, 89, 6667.
(
b) Kuivila, H. G. Acc. Chem. Res. 1968, 1, 299.
2) Reviewed in: (a) Neumann, W. P. Synthesis 1987, 665.
b) Curran, D. P. Synthesis 1988, 417. (c) Curran, D. P. Synthesis
988, 489. (d) Jasperse, C. P.; Curran, D. P.; Fevig, T. L. Chem. Rev.
991, 91, 1237. (e) Curran, D. P. Synlett 1991, 63. (f) Davies, A. G. J.
(
(
1
20) Initiation rates (R = k [iNNi]) are comparatively insensitive to
i i
1
Chem. Res. 2006, 2006, 141. (g) Rowlands, G. J. Tetrahedron 2009, 65,
(
21) Beckwith, A. L. J.; Storey, J. M. D. J. Chem. Soc., Chem. Commun.
995, 977.
22) An inhibitor must be more reactive than the 1-bromoheptane
substrate toward the propagating radical. Thus, 2−I (k2−I/kHep‑Br
= 0.08) is a retarder.
8
2
603. For TMS SiH, see: (h) Chatgilialoglu, C. Acc. Chem. Res. 1992,
3
1
(
5, 188. For a stimulating overview, see: (i) Zard, S. Z. Radical
Reactions in Organic Synthesis; Oxford University Press: New York,
003; Vol. 12.
=
2
(
(
2
10) is an inhibitor, whereas 1−Br (k /k
−Br Hep‑Br
1
3) Carlsson, D. J.; Ingold, K. U. J. Am. Chem. Soc. 1968, 90, 7047.
4) (a) Chatgilialoglu, C.; Ingold, K. U.; Scaiano, J. C. J. Am. Chem.
Soc. 1981, 103, 7739. (b) Ingold, K. U.; Lusztyk, J.; Scaiano, J. C. J.
Am. Chem. Soc. 1984, 106, 343. (c) Johnston, L. J.; Lusztyk, J.; Wayner,
D. D. M.; Abeywickreyma, A. N.; Beckwith, A. L. J.; Scaiano, J. C.;
Ingold, K. U. J. Am. Chem. Soc. 1985, 107, 4594.
5) See, e.g.: Curran, D. P.; Jasperse, C. P.; Totleben, M. J. Org.
Chem. 1991, 56, 7169.
6) Reviewed in: (a) Newcomb, M. Radicals Org. Synth. 2001, 316.
For solvent effects, see: (b) Litwinienko, G.; Beckwith, A. L.; Ingold,
K. U. Chem. Soc. Rev. 2011, 40, 2157.
7) For termination involving self- and cross-radical/radical reactions,
see eq II in ref 3.
8) Lorenz, D. H.; Shapiro, P.; Stern, A.; Becker, F. I. J. Org. Chem.
963, 28, 2332.
9) The reaction rate was measured by following the rate of increase
The cyclized product from 2−I was a retarder but not at these “trace”
levels.
•
(
23) For Bu Sn radicals, see ref 3 and: Shaw, W. J.;
3
Kandandarachchi, P.; Franz, J. A.; Autrey, T. Organometallics 2004,
3, 2080.
24) For cyclohexadienyls, see: Arends, I.; Mulder, P.; Clark, K.;
Wayner, D. D. M. J. Phys. Chem. 1995, 99, 8182.
2
(
(
(
(
(
25) Fischer, H.; Paul, H. Acc. Chem. Res. 1987, 20, 200.
26) See the Supporting Information for details.
27) Radical 9/10-addition to An is more exothermic and less
(
reversible than addition to a monoarene: (a) Beckwith, A. L. J.;
Waters, W. A. J. Chem. Soc. 1956, 1108. (b) Beckwith, A. L. J.; Waters,
W. A. J. Chem. Soc. 1957, 1001. (c) Beckwith, A. L. J.; Norman, R. O.
C.; Waters, W. A. J. Chem. Soc. 1958, 171.
(
(
1
(
(
28) That is, for mean polymer chain-length in monomer M, with
(
P) and without (P ) chain-transfer agent S: 1/P = C[S]/[M] + 1/P ;
of temperature during the UV photolysis of the initiator α,α-azo-bis-
cyclohexylnitrile. While conditions at the center of the reaction cell
remain adiabatic (i.e., for 10−15 s after the start of photolysis), the rate
of temperature increase is proportional to the reaction rate. The light
was then turned off for 10 min for thermal re-equilibration. Initiation
rates were measured using inhibition by galvinoxyl, and termination
rate constants were determined by the rotating sector kinetic method.
The rates of heat evolution and the enthalpies of overall reaction were
measured by conventional methods and this allowed propagation rate
constants k and k to be measured.
0
0
chain-transfer constant C = k /k : Mayo, F. R. J. Am. Chem. Soc. 1943,
S
p
6
5, 2324.
29) Methyl affinities are rate constants for addition measured
relative to the hydrogen abstraction from isooctane at 65 °C:
a) Leavitt, F.; Levy, M.; Szwarc, M.; Stannett, V. J. Am. Chem. Soc.
955, 77, 5493. (b) Zytowski, T.; Fischer, H. J. Am. Chem. Soc. 1997,
119, 12869.
(
(
1
(
(
30) Scaiano, J. C.; Stewart, L. C. J. Am. Chem. Soc. 1983, 105, 3609.
•
31) This work; noting, however, that it is based on a k
Me2CCH /SnH
H
X
4
c
•
value that may well contain a contribution from k
(
106, 4877.
(33) (a) Degueil-Castaing, M.; Rahm, A.; Dahan, N. J. Org. Chem.
1986, 51, 1672. α,β-Unsaturated ketones: (b) Hays, D. S.; Scholl, M.;
Fu, G. C. J. Org. Chem. 1996, 61, 6751.
(34) (a) Enholm, E. J.; Prasad, G. Tetrahedron Lett. 1989, 30, 4939.
(b) Zelechonok, Y.; Silverman, R. B. J. Org. Chem. 1992, 57, 5785.
(35) Chopa, A. B.; Koll, L. C.; Savini, M. C.; Podesta, J. C.;
Neumann, W. P. Organometallics 1985, 1036.
(36) Pereyre, M.; Quintard, J. P. Pure Appl. Chem. 1981, 53, 2401.
(37) Even so, the “salmon red” SnOC Ph
scission above 340 K: Tomaszewski, M. J.; Warkentin, J. J. Chem. Soc.,
Chem. Commun. 1993, 1407.
(38) Alberti, A.; Hudson, A. J. Organomet. Chem. 1979, 164, 219.
(39) Equation 26 indicates v α [RX][SnH] . Reinitiation via stannane
reduction of the B radical would be first order in the stannane and can
be ruled out.
.
(
(
1
(
10) For O acceleration of homolytic arylation, see the Discussion.
Me2CCHCO2 /SnH
2
32) Johnston, L. J.; Scaiano, J.; Ingold, K. U. J. Am. Chem. Soc. 1984,
11) 2.3RT/kcal/mol. See: Bowry, V. W.; Ingold, K. U. J. Org. Chem.
995, 60, 5456.
12) For discussion, see: Beckwith, A. L. J.; Bowry, V. W.; Ingold, K.
U. J. Am. Chem. Soc. 1992, 114, 4983.
13) Newcomb, M.; Horner, J. H.; Filipkowski, M. A.; Ha, C.; Park,
S. U. J. Am. Chem. Soc. 1995, 117, 3674.
14) Franz, J. A.; Bushaw, B. A.; Alnajjar, M. S. J. Org. Chem. 1986,
1, 19.
15) Ingold, K. U.; DiLabio, G. A.; Bowry, V. W. Unpublished results.
16) Halgren, T. A.; Roberts, J. D.; Horner, J. H.; Martinez, F. L.;
Tronche, C.; Newcomb, M. J. Am. Chem. Soc. 2000, 122, 2988.
17) In brief, all published k data for nonpolar radicals lie within 0.4
(
(
5
(
(
•
radical does undergo β-
2
(
H
−
1 −1
log units of the line log(k /M s ) = −13.34 + 0.20(D(R−H)/kcal
H
−
1
15
mol ) <r> = 0.989. Congruent with this trend, the 3.3 kcal/mol
weaker R−H bond in propene compared to toluene, D(benzyl−H) −
0
•
D(allyl−H) = 3.3 kcal/mol, indicates a 5-fold lower k for allyl than
for benzyl (observed k
H
benzyl•
allyl•
/k
≈ 8). Similarly, the 8.4 kcal/mol
H
H
•
weaker R−H bond in cyclohexene than in toluene indicates a 50-fold
(40) See the Supporting Information on the Sn + olefin reaction.
benzyl•
c‑hex‑2‑enyl•
slower rate (observed k
/k
≈ 100). Relative D(R−H)
data derived from: Lin, C. Y.; Peh, J.; Coote, M. L. J. Org. Chem. 2011,
6, 1715.
18) The 3-toluylcyclohex-2-en-1-yl radical (a 3°/2°-allylic radical)
gave about a 6:4 dimer/reduced product ratio in the presence of 20
(41) Newcomb, M.; Park, S. U. J. Am. Chem. Soc. 1986, 108, 4132.
(42) (a) Hawari, J.; Engel, P.; Griller, D. Int. J. Chem. Kinetics 1985,
17, 1215. (b) Chatgilialoglu, C.; Ingold, K.; Scaiano, J. J. Am. Chem.
Soc. 1982, 104, 5119.
(43) Reviewed in: Newcomb, M. Tetrahedron 1993, 49, 1151 See also
ref 6a..
(44) Beckwith, A. L. J.; Bowry, V. W.; Bowman, W. R.; Mann, E.;
Parr, J.; Storey, J. M. D. Angew. Chem. Int. Edit 2004, 43, 95.
(45) Increasing the initiator concentration [i N ] up to 1000-fold
H
H
7
(
−1
−1 −1
mM SnH, from which k [SnH] ≈ 10 s or k ≈ 500 M
s
(similar
H
H
to k (cyclohex-2-enyl)); see: (a) Crich, D.; Mo, X.-S. J. Am. Chem. Soc.
H
1
998, 120, 8298. None of the reduced product can arise from
disproportionation since “pairs of allylic radicals react exclusively by
combination”; see: (b) Klein, R.; Kelley, R. D. J. Phys. Chem. 1975, 79,
2
2
46
(for 1−Br or 2−I) leads to stannane-mediated homolytic arylation as
1
330
J. Org. Chem. 2015, 80, 1321−1331