3
MEXT, funds from the Tobe Maki Scholarship Foundation (to
H.N.), and funds for the ACT-C program from JST (to S.S.).
The authors wish to thank Professors R. Noyori (NU) and A.
Kudo (Tokyo University of Science) for fruitful discussions
as well as L. Wang and Y. Morioka (NU) for their technical
assistance.
Ohtani, Phys. Chem. Chem. Phys. 2010, 12, 2344–2355. b) D.
Tsukamoto, Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka, T.
Hirai, J. Am. Chem. Soc. 2012, 134, 6309–6315.
Alkane (R–H, ethylbenzene) is a major side product in Table 1,
Entries 10–12. This side reaction could be suppressed by light
irradiation with longer wavelength (λ = 370–470 nm, yield of 2a:
51%, yield of ethylbenzene: 1%, Table S3, Entry 2).
D.C. Hurum, A. G. Agrios, K. A. Gray, T. Rajh, M. C. Thurnauer,
J. Phys. Chem. B. 2003, 107, 4545–4549.
Supporting Information is available electronically on the CSJ-
Journal Web site, http://www.csj.jp/journals/chem-lett/index.html.
1
6
1
1
7
8
References and Notes
1
a) G. E. Dobereiner, R. H. Crabtree, Chem. Rev. 2010, 110, 681–
7
1
03. b) C. Gunanathan, D. Milstein, Science 2013, 341, 1229712-
–11.
2
a) K. Fujita, T. Yoshida, Y. Imori, R. Yamaguchi, Org. Lett. 2011,
3, 2278–2281. b) A. Prades, E. Peris, M. Albrecht,
1
Organometallics 2011, 30, 1162–1167. c) R. Kawahara, K. Fujita,
R. Yamaguchi, J. Am. Chem. Soc. 2012, 134, 3643–3646. d) R.
Kawahara, K. Fujita, R. Yamaguchi, Angew. Chem. Int. Ed. 2012,
5
1, 12790–12794. e) K. F. Donnelly, C. Segarra, Li-X. Shao, R.
Suen, H. Müller-Bunz, M. Albrecht, Organometallics 2015, 34,
076–4084. f) S. Chakraborty, P. E. Piszel, W. W. Brennessel, W.
4
D. Jones, Organometallics 2015, 34, 5203–5206. g) M. Valencia,
H. Müller-Bunz, R. A. Gossage, M. Albrecht, Chem. Commun.
2
016, 52, 3344–3347. h) I. Dutta, A. Sarbajna, P. Pandey, S. M. W.
Rahaman, K. Singh, J. K. Bera, Organometallics 2016, 35, 1505–
513.
1
3
a) W.-H. Kim, I.-S. Park, J. Park, Org. Lett. 2006, 8, 2543–2545. b)
T. Mitsudome, Y. Mikami, H. Funai, T. Mizugaki, K. Jitsukawa, K.
Kaneda, Angew. Chem. Int. Ed. 2008, 47, 138–141. c) T.
Mitsudome, Y. Mikami, K. Ebata, T. Mizugaki, K. Jitsukawa, K.
Kaneda, Chem. Commun. 2008, 4804–4806. d) K. Shimizu, K.
Sugino, K. Sawabe, A. Satsuma, Chem. Eur. J. 2009, 15, 2341–
2
351. e) W. Fang, J. Chen, Q. Zhang, W. Deng, Y. Wang, Chem.
Eur. J. 2011, 17, 1247–1256. f) B. Feng, C. Chen, H. Yang, X.
Zhao, L. Hua, Y. Yu, T. Cao, Y. Shi, Z. Hou, Adv. Synth. Catal.
2
012, 354, 1559–1565. g) Y. Zhu, M. Shen, Y. Xia, M. Lu, Appl.
Organometal. Chem. 2015, 29, 152–156. h) D. Damodara, R.
Arundhathi, P. R. Likhar, Adv. Synth. Catal. 2014, 356, 189–198. i)
A. Bayat, M. Shakourian-Fard, N. Ehyaei, M. M. Hashemi, RSC
Adv. 2015, 5, 22503–22509.
4
5
a) W. Zhai, S. Xue, A. Zhu, Y. Luo, Y. Tian, ChemCatChem 2011,
3
, 127–130. b) K. Imamura, H. Tsukahara, K. Hamamichi, N. Seto,
K. Hashimoto, H. Kominami, Appl. Catal. A 2013, 450, 28–33.
T. P. Ruberu, N. C. Nelson, I. I. Slowig, J. Vela, J. Phys. Chem.
Lett. 2012, 3, 2798−2802.
6
7
8
9
1
1
T. Mitkina, C. Stanglmair, W. Setzer, M. Gruber, H. Kisch, B.
König, Org. Biomol. Chem. 2012, 10, 3556–3561.
Z. Liu, J. Carner, A. Kudo, H. Naka, S. Saito, Chem. Eur. J. 2013,
1
9, 9452–9456.
S. Higashimoto, Y. Tanaka, R. Ishikawa, S. Hasegawa, M. Azuma,
H. Ohue, Y. Sakata, Catal. Sci. Technol. 2013, 3, 400–403.
S. Sarina, S. Bai, Y. Huang, C. Chen, J. Jia, E. Jaatinen, G. A.
Ayoko, Z. Bao, H. Zhu, Green Chem. 2014, 16, 331–341.
Z. Chai, T.-T. Zeng, Q. Li, L.-Q. Lu, W.-J. Xiao, D. Xu, J. Am.
Chem. Soc. 2016, 138, 10128–10131.
Over-oxidation of aldehydes to esters or carboxylic acids is a major
side reaction. Aldehydes and alcohols can also give acetals in situ:
H. Zhang, Z. Zhu, Y. Wu, T. Zhao, L. Li, Green Chem. 2014, 16,
0
1
4
076–4080.
1
2
Dehydrogenation of simple aliphatic alcohols is more endothermic
than that of allylic or benzylic alcohols. Calculated changes of
Gibbs free energy from ethanol, allyl alcohol, and benzyl alcohol to
2
corresponding aldehydes and H are +37.7, +21.7, and +26.9 kJ
–
1
mol , respectively (25°C, 1 atm, at the M06-2X/6-311++G**
level).
1
1
1
3
4
5
a) J. Caner, Z. Liu, Y. Takada, A. Kudo, H. Naka, S. Saito, Catal.
Sci. Technol. 2014, 4, 4093–4098. b) V. N. Tsarev, Y. Morioka, J.
Caner, Q. Wang, R. Ushimaru, A. Kudo, H. Naka, S. Saito, Org.
Lett. 2015, 17, 2530–2533.
2
Au/TiO photocatalysts for hydrogen production: a) K. A. Connelly,
H. Idriss, Green Chem. 2012, 14, 260–280. b) B. Gupta, A. A.
Melvin, T. Matthews, S. Dash, A. K. Tyagi, Renewable Sustainable
Energy Rev. 2016, 58, 1366–1375.
Au/TiO
2
plasmonic photocatalysts for aerobic oxidation of
alcohols: a) E. Kowalska, O.-O. Prieto-Mahaney, R. Abe, B.
3