Journal of the American Chemical Society
Communication
Gom
Barragan
́
ez, V.; Platero-Prats, A. E.; Reves
́
, M.; Echeverría, J.; Cremades, E.;
(37) For other main group olefin hydrosilylations, see ref 9d and:
(a) Zaranek, M.; Witomska, S.; Patroniak, V.; Pawluc, P. Chem.
Commun. 2017, 53, 5404. (b) Leich, V.; Spaniol, T. P.; Okuda, J.
Organometallics 2016, 35, 1179.
́
, F.; Alvarez, S. Dalton Trans. 2008, 2832. See ref 11 and:
Ruccolo, S.; Sattler, W.; Rong, Y.; Parkin, G. J. Am. Chem. Soc. 2016, 138,
14542.
(38) See, for example, ref 35b and: Du, X.; Huang, Z. ACS Catal. 2017,
7, 1227.
(14) For related [TpR,R′]MgR derivatives, see: (a) Rauch, M.; Ruccolo,
S.; Mester, J. P.; Rong, Y.; Parkin, G. Chem. Sci. 2016, 7, 142. (b) Han, R.;
Parkin, G. J. Am. Chem. Soc. 1992, 114, 748.
(15) There is only one terminal magnesium hydrosulfide compound
listed in the Cambridge Structural Database (CSD version 5.38) (ref
15a), namely [TpTol]MgSH (ref 15b): (a) Groom, C. R.; Bruno, I. J.;
Lightfoot, M. P.; Ward, S. C. Acta Crystallogr. 2016, B72, 171.
(b) Ghosh, P.; Parkin, G. Chem. Commun. 1996, 1239.
(16) Kuwata, S.; Hidai, M. Coord. Chem. Rev. 2001, 213, 211.
(17) Although there are no terminal Mg-N(H)Ph compounds listed in
the CSD, bridging derivatives are known: (a) Grigsby, W. J.; Power, P. P.
J. Chem. Soc., Dalton Trans. 1996, 4613. (b) Armstrong, D. R.; Clegg, W.;
Mulvey, R. E.; Rowlings, R. B. J. Chem. Soc., Dalton Trans. 2001, 409.
(18) Scheurell, K.; Konig, R.; Troyanov, S. I.; Kemnitz, E. Z. Anorg. Allg.
Chem. 2012, 638, 1265.
(19) For bridging carboxylate derivatives, see: Yang, K.-C.; Chang, C.-
C.; Yeh, C.-S.; Lee, G.-H.; Peng, S.-M. Organometallics 2001, 20, 126.
(20) (a) Vitillo, J. G. RSC Adv. 2015, 5, 36192. (b) Cleland, W. W.;
Andrews, T. J.; Gutteridge, S.; Hartman, F. C.; Lorimer, G. H. Chem. Rev.
1998, 98, 549. (c) Andersson, I. J. Exp. Bot. 2008, 59, 1555.
(d) Tcherkez, G. Plant, Cell Environ. 2013, 36, 1586.
(21) Andersson, I. J. Mol. Biol. 1996, 259, 160.
(22) Odom, D.; Gramer, C. J.; Young, V. G.; Hilderbrand, S. A.;
Sherman, S. E. Inorg. Chim. Acta 2000, 297, 404.
(23) English, N. J.; El-Hendawy, M. M.; Mooney, D. A.; MacElroy, J.
M. D. Coord. Chem. Rev. 2014, 269, 85.
(24) For the use of PhSiH3 to synthesize Mg hydride compounds, see
refs 4−6 and: Michalczyk, M. J. Organometallics 1992, 11, 2307.
(25) For comparison, the Mg-H bond lengths in other derivatives are
in the range 1.75(7)−1.819(8) Å. See refs 4 and 5.
(26) For comparison, other terminal magnesium hydride compounds
exhibit chemical shifts in the range δ 3.6−5.7. See refs 4 and 5.
(27) For other examples of M-H/Si-H exchange, see: (a) Sattler, W.;
Parkin, G. Catal. Sci. Technol. 2014, 4, 1578. (b) Corey, J. Y. Chem. Rev.
2011, 111, 863.
(39) For examples of hydrosilylation of styrenes that exhibit anti-
Markovnikov selectivity, see: (a) Raya, B.; Biswas, S.; RajanBabu, T. V.
ACS Catal. 2016, 6, 6318. (b) Bart, S. C.; Lobkovsky, E.; Chirik, P. J. J.
Am. Chem. Soc. 2004, 126, 13794. (c) Tondreau, A. M.; Atienza, C. C.
H.; Weller, K. J.; Nye, S. A.; Lewis, K. M.; Delis, J. G. P.; Chirik, P. J.
Science 2012, 335, 567.
(40) For examples of hydrosilylation of styrenes that exhibit
Markovnikov selectivity, see refs 9d, 39b, and: (a) Gountchev, T. I.;
Tilley, T. D. Organometallics 1999, 18, 5661. (b) Fu, P.-F.; Brard, L.; Li,
Y.; Marks, T. J. J. Am. Chem. Soc. 1995, 117, 7157. (c) Gribble, M. W.;
Pirnot, M. T.; Bandar, J. S.; Liu, R. Y.; Buchwald, S. L. J. Am. Chem. Soc.
2017, 139, 2192.
(41) Lennox, A. J.; Lloyd-Jones, G. C. Chem. Soc. Rev. 2014, 43, 412.
(42) For hydroboration of olefins catalyzed by other metals, see:
(a) Geier, S. J.; Vogels, C. M.; Westcott, S. A. ACS Symp. Ser. 2016, 1236,
209. (b) Vogels, C. M.; Westcott, S. A. Curr. Org. Chem. 2005, 9, 687.
(43) (a) Weetman, C.; Hill, M. S.; Mahon, M. F. Chem. - Eur. J. 2016,
22, 7158. (b) Anker, M. D.; Arrowsmith, M.; Arrowsmith, R. L.; Hill, M.
S.; Mahon, M. F. Inorg. Chem. 2017, 56, 5976. (c) Mukherjee, D.;
Shirase, S.; Spaniol, T. P.; Mashima, K.; Okuda, J. Chem. Commun. 2016,
52, 13155.
(44) For other examples of hydroboration of pyridines catalyzed by
Mg, see ref 9b and: (a) Weetman, C.; Hill, M. S.; Mahon, M. F.
Polyhedron 2016, 103, 115. (b) Intemann, J.; Lutz, M.; Harder, S.
Organometallics 2014, 33, 5722. (c) Arrowsmith, M.; Hill, M. S.;
Hadlington, T.; Kociok-Kohn, G.; Weetman, C. Organometallics 2011,
30, 5556.
(45) For example, whereas a 7:1 ratio of 1,4 to 1,2 isomers is obtained
at 60 °C (10% catalyst loading), an 11:1 ratio is obtained at 100 °C.
Mixtures of N-boryl-1,4- and 1,2-dihydropyridine isomers are observed
in other catalytic systems (refs 44b and 45a,b), and examples of selective
1,2-addition (refs 44b and 45c,d) and 1,4-addition (ref 9b) are known.
(a) Oshima, K.; Ohmura, T.; Suginome, M. J. Am. Chem. Soc. 2012, 134,
3699. (b) Dudnik, A. S.; Weidner, V. L.; Motta, A.; Delferro, M.; Marks,
T. J. Nat. Chem. 2014, 6, 1100. (c) Kaithal, A.; Chatterjee, B.;
Gunanathan, C. Org. Lett. 2016, 18, 3402. (d) Fan, X.; Zheng, J.; Li, Z.
H.; Wang, H. J. Am. Chem. Soc. 2015, 137, 4916.
(28) In this regard, although [Me3TACD·AlBui3]MgH does not react
with styrene, it does insert Ph2C=CH2 to afford linear and branched
isomers, neither of which has been structurally characterized. See ref 9b.
(29) It is also worth noting that hydromagnesiation of olefins using
“MgH2” or in situ generated “HMgX” species often employs transition
metal catalysis. See: Greenhalgh, M. D.; Thomas, S. P. Synlett 2013, 24,
531.
(46) Park, S.; Chang, S. Angew. Chem., Int. Ed. 2017, 56, 7720.
(47) (a) Edraki, N.; Mehdipour, A. R.; Khoshneviszadeh, M.; Miri, R.
Drug Discovery Today 2009, 14, 1058. (b) Connon, S. J. Org. Biomol.
Chem. 2007, 5, 3407.
(30) Harvey, J. N. Organometallics 2001, 20, 4887.
(31) Reger, D. L.; Garza, D. G.; Lebioda, L. Organometallics 1992, 11,
4285 and references therein.
(32) Reger, D. L.; McElligott, P. J. J. Organomet. Chem. 1981, 216, C12.
(33) (a) Vela, J.; Vaddadi, S.; Cundari, T. R.; Smith, J. M.; Gregory, E.
A.; Lachicotte, R. J.; Flaschenriem, C. J.; Holland, P. L. Organometallics
2004, 23, 5226. (b) Vela, J.; Smith, J. M.; Lachicotte, R. J.; Holland, P. L.
Chem. Commun. 2002, 2886.
(34) Jiao, Y.; Evans, M. E.; Morris, J.; Brennessel, W. W.; Jones, W. D. J.
Am. Chem. Soc. 2013, 135, 6994.
(35) Although there is negligible reduction of styrene to ethylbenzene
for 10% catalyst loading, higher concentrations of styrene, correspond-
ing to 1% catalyst loading, result in the formation of small amounts (ca.
15%) of ethylbenzene. For other examples of styrene hydrogenation
employing PhSiH3, see: (a) Baruah, J. B.; Osakada, K.; Yamamoto, T. J.
Mol. Catal. A: Chem. 1995, 101, 17. (b) Troegel, D.; Stohrer, J. Coord.
Chem. Rev. 2011, 255, 1440.
i
(36) TOFs for [TismPr Benz]MgMe (10%) as a precatalyst:
PhCH=CH2/PhSiH3 (0.9 h−1 at 60 °C), PhCH=CH2/HBpin (0.3 h−1
at 60 °C), PriN=C=NPri/HBpin (8.5 h−1 at rt), CyN=C=NCy/HBpin
(6.5 h−1 at rt), and py/HBpin (0.9 h−1 for formation of the isomeric
mixture at 60 °C).
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX