Communication
Organic & Biomolecular Chemistry
alkenes, such as 3-buten-1-ol, to obtain a fluoroalkylated com-
pound 6 by visible-light photoredox catalysis (Scheme 3C).25
In summary, we developed a new facile method for prepa-
ration of ACTI and obtained ACTI in high yield for the first
time. As a heterobifunctional fluoroalkylation agent, the reac-
tivity of ACTI was investigated for the first time. The results
indicated that the azide group could react with different
alkynes with aromatic and aliphatic structures to give the pro-
ducts in high yields using CuI/TBAA as a catalyst. Moreover,
46, 754; (c) M. S. Wiehn, E. V. Vinogradova and A. Togni,
J. Fluorine Chem., 2010, 131, 951.
7 N. O. Brace, J. Fluorine Chem., 1999, 93, 1.
8 (a) Y. Takeyama, Y. Ichinose, K. Oshima and K. Utimoto,
Tetrahedron Lett., 1989, 30, 3159; (b) N. O. Brace, J. Fluorine
Chem., 2001, 108, 147.
9 (a) T. Billard, B. R. Langlois and M. Medebielle, Tetrahedron
Lett., 2001, 42, 3463; (b) C. Pooput, W. R. Dolbier and
M. Medebielle, J. Org. Chem., 2006, 71, 3564.
the iodine atom can also chemically or photochemically react 10 (a) E. J. Cho, T. D. Senecal, T. Kinzel, Y. Zhang,
with different reagents. To the best of our knowledge, ACTI is
the first highly stable and versatile heterobifunctional fluoro-
alkylation agent. Therefore, it will be very useful for prepa-
ration of new functional fluorinated organic compounds, or
functional fluorinated polymers, such as medicines and
D. A. Watson and S. L. Buchwald, Science, 2010, 328, 1679;
(b) I. Popov, S. Lindeman and O. Daugulis, J. Am. Chem.
Soc., 2011, 133, 9286; (c) H. Morimoto, T. Tsubogo,
N. D. Litvinas and J. F. Hartwig, Angew. Chem., Int. Ed.,
2011, 50, 3793.
pharmaceutics. In addition, the strategy for ACTI may also be 11 (a) J. D. Nguyen, J. W. Tucker, M. D. Konieczynska and
used for the synthesis of ICF2CF2N3 from tetrafluoroethylene
and its application in the preparation of fluorinated organic
compounds. Further investigation is underway in our laboratory.
C. R. J. Stephenson, J. Am. Chem. Soc., 2011, 133, 4160;
(b) N. Iqbal, S. Choi, E. Kim and E. J. Cho, J. Org. Chem.,
2012, 77, 11383.
This research was supported financially by the National 12 (a) C. P. Zhang, Q. Y. Chen, Y. Guo and J. C. Xiao, Tetra-
Natural Science Foundation of China (no. 21174136).
hedron, 2013, 69, 10955; (b) E. Schmitt, B. Rugeri,
A. Panossian, J.-P. Vors, S. Pazenok and F. R. Leroux, Org.
Lett., 2015, 17, 4510; (c) E. Schmitt, G. Landelle, J.-P. Vors,
N. Lui, S. Pazenok and F. R. Leroux, Eur. J. Org. Chem.,
2015, 6052.
Notes and references
1 (a) P. Kirsch, in Modern Fluoroorganic Chemistry, Wiley- 13 (a) C. D. Bedford and K. Baum, J. Org. Chem., 1980, 45, 347;
VCH, Weinheim, 2004; (b) T. Umemoto, J. Fluorine Chem.,
2000, 105, 211; (c) J. A. Ma and D. Cahard, Chem. Rev.,
2008, 108, 1; (d) L. Chu and F. L. Qing, J. Am. Chem. Soc.,
(b) H. P. Cao and Q. Y. Chen, J. Fluorine Chem., 2007, 128,
1187; (c) J. Zhu, B. Wang and D. Liu, Green Chem., 2013, 15,
1042.
2012, 134, 1298; (e) S. B. Vallejo and A. Postigo, Eur. J. Org. 14 (a) O. Ruff, O. Bretschneider and Z. Anorg, Allg. Chem.,
Chem., 2012, 1889; (f) T. Furuya, A. S. Kamlet and T. Ritter,
Nature, 2011, 473, 470; (g) P. Kirsch, Modern Fluoro-organic
1933, 210, 173; (b) H. Thomassen, S. Samdal and
K. Hedberg, J. Am. Chem. Soc., 1992, 114, 2810.
Chemistry: Synthesis, Reactivity, Applications, Wiley-VCH, 15 H. Saijo, M. Ohashi and S. Ogoshi, J. Am. Chem. Soc., 2014,
Weinheim, 2013; (h) S. Purser, P. R. Moore, S. Swallow and 136, 15158.
V. Gouverneur, Chem. Soc. Rev., 2008, 37, 320; (i) J. Wang, 16 R. E. Banks and M. J. McGlinchey, J. Chem. Soc. C, 1971,
M. S. Rosello, J. L. Acena, C. Delpozo, A. E. Sorochinsky, 23, 3971.
S. Fustero, V. A. Soloshonok and H. Liu, Chem. Rev., 2014, 17 (a) V. D. Bock, H. Hiemstra and J. H. van Maarseveen,
114, 2432. Eur. J. Org. Chem., 2006, 51.
2 (a) D. O’Hagan, J. Fluorine Chem., 2010, 131, 1071; 18 (a) V. V. Rostovtsev, L. G. Green, V. V. Fokin and
(b) C. Alonso, E. M. Marigorta, G. Rubiales and F. Palacios,
Chem. Rev., 2015, 115, 1847.
3 (a) I. Ruppert, K. Schlich and W. Volbach, Tetrahedron Lett.,
K. B. Sharpless, Angew. Chem., Int. Ed., 2002, 41, 2596;
(b) T. Hiramatsu, Y. Guo and T. Hosoya, Org. Biomol.
Chem., 2007, 5, 2916.
1984, 25, 2195; (b) G. K. S. Prakash, R. Krishnamurti and 19 K. Christe and C. J. Schack, Inorg. Chem., 1981, 20, 2566.
G. A. Olah, J. Am. Chem. Soc., 1989, 111, 393.
20 (a) S. Lal and S. D. Gonzalez, J. Org. Chem., 2011, 76, 2367;
(b) W. H. Binder and C. Kluger, Macromolecules, 2004, 37,
9321; (c) D. Wang, N. Li, M. Zhao, We. Shi, C. Ma and
B. Chen, Green Chem., 2010, 12, 2120; (d) K. Wang, X. Bi,
S. Xing, P. Liao, Z. Fang, X. Meng, Q. Zhang, Q. Liu and
Y. Ji, Green Chem., 2011, 13, 562; (e) Z. Gonda and
Z. Novak, Dalton Trans., 2010, 39, 726; (f) L. Y. Wu,
Y. X. Xie, Z. S. Chen, Y. N. Niu and Y. M. Liang, Synlett,
2009, 1453.
4 (a) B. R. Langlois, E. Laurent and N. Roidot, Tetrahedron
Lett., 1991, 32, 7525; (b) A. T. Parsons, T. D. Senecal and
S. L. Buchwald, Angew. Chem., Int. Ed., 2012, 51, 2947;
(c) C. Chen, Y. Xie, L. Chu, R. W. Wang, X. Zhang and
F. L. Qing, Angew. Chem., Int. Ed., 2012, 51, 2492.
5 (a) T. Umemoto, S. Ishihara and K. Adachi, J. Fluorine
Chem., 1995, 74, 77; (b) S. Noritake, N. Shibata, Y. Nomura,
Y. Huang, A. Matsnev, S. Nakamura, T. Torua and
D. Cahard, Org. Biomol. Chem., 2009, 7, 3599.
21 K. Jouvin, J. Heimburger and G. Evano, Chem. Sci., 2012, 3,
756.
6 (a) P. Eisenberger, I. Kieltsch, R. Koller, K. Stanek and
A. Togni, Org. Synth., 2011, 88, 168; (b) I. Kieltsch, 22 (a) C. Shao, G. Cheng, D. Su, J. Xu, X. Wang and Y. Hu, Adv.
P. Eisenberger and A. Togni, Angew. Chem., Int. Ed., 2007,
Synth. Catal., 2010, 352, 1587; (b) Q. Zhang, X. Wang,
Org. Biomol. Chem.
This journal is © The Royal Society of Chemistry 2016