10.1002/cctc.201800358
ChemCatChem
COMMUNICATION
[7]
[8]
S. Guo, S. Zhang, L. Wu, S. Sun, Angew. Chem. Int. Ed. 2012, 51,
11770.
alcohol) with both high conversion and selectivity (Table 3, Entries
4-6).
Y. Liang, H. Wang, P. Diao, W. Chang, G. Hong, Y. Li, M. Gong, L. Xie,
J. Zhou, J. Wang, T. Z. Regier, F. Wei, H. Dai, J. Am. Chem. Soc. 2012,
134, 15849.
Conclusions
[9]
H. W. Liang, S. Bruller, R. Dong, J. Zhang, X. Feng, K. Mullen, Nat.
Commun. 2015, 6, 7992.
[10] X. Zou, X. Huang, A. Goswami, R. Silva, B. R. Sathe, E. Mikmekova, T.
Asefa, Angew. Chem. Int. Ed. 2014, 53, 4372.
In summary, a family of ordered mesoporous Co@Carbon
catalysts have been fabricated via a direct, sustainable and
efficient mechanochemical coordination self-assembly with
inexpensive biomass tannin as the precursor. No solvents are
needed, and this solid-state process is complete in 1 h.
Co@OMC catalysts possess uniform mesoporous channels,
tunable pore size (4.3-9.4 nm), and high surface areas (up to 700
m2g-1). Co NPs with a high loading up to 21.5 wt% are
homogeneously dispersed in the ordered mesoporous matrix
even at 600oC. The phenolic ligands disperse Co2+ ions by
coordination interaction and stabilize metallic Co seeds at the
beginning of reduction, while the ordered mesoporous channels
could confine Co NPs by separation in space. Importantly,
catalytic deoxygenation of various ketones/aldehydes/alcohols
can be achieved by Co@P1230.8 catalyst with high yields and
good stabilities. This catalytic system provides a facile and
heterogeneous approach for selective removal of -C=O/-OH
groups in organic synthesis and updating biomass into biofuels.
[11] S. Mao, Z. Wen, T. Huang, Y. Hou, J. Chen, Energy Environ. Sci. 2014, 7,
609.
[12]
P. Zhang, Z. A. Qiao, Z. Zhang, S. Wan, S. Dai, J. Mater. Chem. A 2014,
2, 12262.
[13]
J. Lee, J. Kim, T. Hyeon, Adv. Mater. 2006, 18, 2073.
[14] X. Ji, K. T. Lee, R. Holden, L. Zhang, J. Zhang, G. A. Botton, M. Couillard,
L. F. Nazar, Nat. Chem. 2010, 2, 286.
[15] K. Möller, T. Bein, Chem. Mater. 2017, 29, 371.
[16] S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, R. Ryoo, Nature
2001, 412, 169.
[17] Y. Wan, H. Wang, Q. Zhao, M. Klingstedt, O. Terasaki, D. Zhao, J. Am.
Chem. Soc. 2009, 131, 4541.
[18] S. Wang, Q. Zhao, H. Wei, J. Q. Wang, M. Cho, H. S. Cho, O. Terasaki,
Y. Wan. J. Am. Chem. Soc. 2013,135, 11849.
[19] A. Lu, A. Kiefer, W. Schmidt, F. Schüth, Chem. Mater. 2004, 16, 100.
[20] T. Y. Ma, L. Liu, Z. Y. Yuan, Chem. Soc. Rev. 2013, 42, 3977.
[21] P. F. Fulvio, C. Liang, S. Dai, M. Jaroniec, Eur. J. Inorg. Chem. 2009,
2009, 605.
[22] K. T. Lee, X. Ji, M. Rault, L. F. Nazar, Angew. Chem. Int. Ed. 2009, 48,
5661.
[23] Z. Sun, B. Sun, M. Qiao, J. Wei, Q. Yue, C. Wang, Y. Deng, S. Kaliaguine,
D. Zhao, J. Am. Chem. Soc. 2012, 134, 17653.
Acknowledgements
[24] S. C. Warren, L. C. Messina, L. S. Slaughter, M. Kamperman, Q. Zhou,
S. M. Gruner, F. J. DiSalvo, U. Wiesner, Science 2008, 320, 1748.
[25] Y. D. Xia, R. Mokaya, Adv. Mater. 2004, 16, 886.
[26] R. Liu, X. Wang, X. Zhao, P. Feng, Carbon, 2008, 46, 1664.
[27] W. C. Choi, S. I. Woo, M. K. Jeon, J. M. Sohn, M. R. Kim, H. J. Jeon,
Adv. Mater. 2005, 17, 446.
S. D., N. C. and P. F. Z. were supported by the Division of
Chemical Sciences, Geosciences, and Biosciences, Office of
Basic Energy Sciences, U. S. Department of Energy. Electron
microscopy at ORNL (S.Z.Y.) was supported by the U.S.
Department of Energy, Office of Science, Basic Energy Sciences,
Materials Sciences and Engineering Division and performed in
part as a user project proposal at the ORNL Center for
Nanophase Materials Sciences, which is a DOE Office of the
Science User Facility Facilities. P. F. Z. acknowledges Shanghai
Pujiang Program (Grant No. 17PJ1403500), National Natural
Science Foundation of China (Grant No. 21776174) and the
Thousand Talent Program of China for the partial support.
[28] J. Liu, T. Yang, D.-W. Wang, G. Q. Lu, D. Zhao, S. Z. Qiao, Nat.
Commun. 2013, 4, 2798.
[29] K. M. Choi, K. Kuroda, Chem. Commun. 2011, 47, 10933.
[30] K. V. Kumar, S. Gadipelli, K. Preuss, H. Porwal, T. Zhao, Z. X. Guo, M.
M. Titirici, Chemsuschem, 2017, 10, 199.
[32] F. L. Braghiroli, V. Fierro, J. Parmentier, A. Pasc, A. Celzard, Green
Chem. 2016, 18, 3265.
[33] J. Wei, Y. Liang, Y. Hu, B. Kong, J. Zhang, Q. Gu, Y. Tong, X. Wang, S.
P. Jiang, H. Wang, Angew. Chem. Int. Ed. 2016, 55, 12470.
[34] S. J. Yang, M. Antonietti, N. Fechler, J. Am. Chem. Soc. 2015, 137, 8269.
[35] S. Ji, Y. Chen, Q. Fu, Y. Chen, J. Dong, W. Chen, Z. Li, Y. Wang, L. Gu,
W. He, C. Chen, Q. Peng, Y. Huang, X. Duan, D. Wang, C. Draxl, Y. Li,
J. Am. Chem. Soc. 2017, 139, 9795.
Keywords: ordered mesoporous carbons • metal-carbon
catalysts • confined catalysis • cobalt nanoparticles • selective
deoxygenation
[36] K. Shen, X. Chen, J. Chen, Y. Li, ACS Catal. 2016, 6, 5887.
[37] W. Li, J. Liu, D. Zhao, Nat. Rev. Mater. 2016, 1, 16023.
[38] P. Zhang, J. Zhang, S. Dai, Chem. Eur. J. 2017, 23, 1986.
[39] D. Srimani, A. Mukherjee, A. F. Goldberg, G. Leitus, Y. Diskin-Posner, L.
J. Shimon, Y. Ben David, D. Milstein, Angew. Chem. Int. Ed. 2015, 54,
12357.
[1]
[2]
S. Gao, Y. Lin, X. Jiao, Y. Sun, Q. Luo, W. Zhang, D. Li, J. Yang, Y. Xie.
Nature 2016, 529, 68.
F. A. Westerhaus, R. V. Jagadeesh, G. Wienhofer, M. M. Pohl, J. Radnik,
A. E. Surkus, J. Rabeah, K. Junge, H. Junge, M. Nielsen, A. Bruckner,
M. Beller, Nat. Chem. 2013, 5, 53.
[40] B. Wu, H. Huang, J. Yang, N. Zheng, G. Fu, Angew. Chem. Int. Ed. 2012,
51, 3440.
[3]
G. H. Wang, J. Hilgert, F. H. Richter, F. Wang, H. J. Bongard, B.
Spliethoff, C. Weidenthaler, F. Schuth, Nat. Mater. 2014, 13, 293.
R. M. Bullock, Science 2013, 342, 1054.
[41] C. Wang, L. Wang, J. Zhang, H. Wang, J. P. Lewis, F. S. Xiao, J. Am.
Chem. Soc. 2016, 138, 7880.
[4]
[5]
G. L. Bezemer, J. H. Bitter, H. P. C. E. Kuipers, H. Oosterbeek, J. E.
Holewijn, X. Xu, F. Kapteijn, A. J. v. Dillen, K. P. d. Jong, J. Am. Chem.
Soc. 2006, 128, 3956.
[42] M. J. Gilkey, B. Xu, ACS Catal. 2016, 6, 1420.
[43] K. L. Luska, P. Migowski, S. El Sayed, W. Leitner, Angew. Chem. Int. Ed.
2015, 54, 15750.
[6]
H. Wang, C. Chen, Y. Zhang, L. Peng, S. Ma, T. Yang, H. Guo, Z. Zhang,
D. S. Su, J. Zhang, Nat. Commun. 2015, 6, 7181.
[44] X. Wang, R. Rinaldi, Angew. Chem. Int. Ed. 2013, 52, 11499.
[45] F. Feng Tao, Y. Tang, Nat. Chem. 2016, 8, 902.
This article is protected by copyright. All rights reserved.