Journal of the American Chemical Society
Page 6 of 8
This research was supported by the Deutsche
(8) This reaction pathway was further supported by theoretical
calculations: Fang, S.; Chen, H.; Wang, W.; Wei, H. Mechanistic
insights into the catalytic carbonyl hydrosilylation by cationic
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
Forschungsgemeinschaft (Oe 249/20‐1) and the Fonds der
Chemischen Industrie (predoctoral fellowship to J.F., 2016–
2018). M.O. is indebted to the Einstein Foundation (Berlin) for
an endowed professorship. P.H. acknowledges financial
support from the Slovak Grant Agencies VEGA (Grant Nos.
+
[
CpM(CO)
2
(IMes)] (M = Mo, W) complexes: the intermediacy of
1
η -H(Si) metal complexes. New J. Chem. 2018, 42, 4923–4932.
9) Due to the insolubility of complex 1 in common non-
coordinating solvents, the C NMR resonance signals for the CO
+
(
13
1
/0507/17 and 1/0712/18) and APVV (Grant No. APVV-17-0324)
+ 6
8
ligands were measured for the THF-d adduct of 1 .
as well as European Union’s Horizon 2020 research and
innovation program under the Marie Skłodowska-Curie Grant
No. 752285. We also thank Dr. Sebastian Kemper (TU Berlin)
for expert advice with the NMR measurements.
(10) Due to disorder in the crystal, another structure of
+
hydrosilane adduct cis-8a with different interatomic distances
and angles for the silylated CO ligand was found. In Scheme 3,
duplicated atoms are omitted for clarity. Selected interatomic
distances (Å) and angles (deg) for the second version: W–H: 1.73,
W–CCO: 1.98, O–CCO: 1.16, W–CCOSi: 1.79, O–CCOSi: 1.36, O–Si: 1.74,
Si–O–CCO: 136.5°, av(O–Si–C): 104.1°, Σ(C–Si–C): 343°.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
REFERENCES
(
1) For comprehensive overviews of Si–H bond activation by
transition-metal complexes, see: (a) Corey, J. Y. Reactions of
Hydrosilanes with Transition Metal Complexes. Chem. Rev. 2016,
(11) For silylcarboxonium ions, see: (a) Kira, M.; Hino, T.;
Sakurai,
H.
Siloxycarbenium
Tetrakis[3,5-
1
16, 11291–11435. (b) Corey, J. Y. Reactions of Hydrosilanes with
bis(trifluoromethyl)phenyl]borates and Their Role in Reactions of
Transition Metal Complexes and Characterization of the
Products. Chem. Rev. 2011, 111, 863–1071.
Ketones with Nucleophiles. Chem. Lett. 1992, 555–558. (b)
29
Prakash, G. K. S.; Wang, Q.; Rasul, G.; Olah, G. A. Preparation, Si
and 13C NMR and DFT/IGLO studies of silylcarboxonium ions.
Olah, J. Organomet. Chem. 1998, 550, 119–123. (c) Prakash, G. K. S.;
Bae, C.; Rasul, G.; Olah, G. A. Preparation and NMR Study of
Silylated Carboxonium Ions. J. Org. Chem. 2002, 67, 1297–1301.
(12) For general reviews of metal–ligand cooperativity, see: (a)
Khusnutdinova, J. R.; Milstein, D. Metal–Ligand Cooperation.
Angew. Chem., Int. Ed. 2015, 54, 12236–12273. (b) Cooperative
Catalysis; Peters, R., Ed.; Wiley-VCH: Weinheim, Germany, 2015.
(c) Grützmacher, H. Cooperating Ligands in Catalysis. Angew.
Chem., Int. Ed. 2008, 47, 1814–1818.
(
2) For comprehensive monographs on hydrosilylation, see: (a)
Larson, G. L.; Fry, J. L. Ionic and Organometallic-Catalyzed
Organosilane Reductions; Wiley: Hoboken, NJ, 2010. (b)
Hydrosilylation: A Comprehensive Review on Recent Advances;
Marciniec, B., Ed.; Springer: Heidelberg, Germany, 2009.
(
3) For electrophilic Si–H bond activation, see: (a) Iglesias, M.;
Fernández-Alvarez, F. J.; Oro, L. A. Non-classical hydrosilane
mediated reductions promoted by transition metal complexes.
Coord. Chem. Rev. 2019, 386, 240–266. (b) Lipke, M. C.; Liberman-
Martin, A. L.; Tilley, T.D. Electrophilic Activation of Silicon–
Hydrogen Bonds in Catalytic Hydrosilations. Angew. Chem., Int.
Ed. 2017, 56, 2260–2294. (c) Iglesias, M.; Fernández-Alvarez, F. J.;
Oro, L. A. Outer‐Sphere Ionic Hydrosilylation Catalysis.
ChemCatChem 2014, 6, 2486–2489. (d) Robert, T.; Oestreich, M.
Si–H Bond Activation: Bridging Lewis Acid Catalysis with
(13) For overviews of cooperative Si–H bond activation, see: (a)
Higashi T.; Kusumoto, S.; Nozaki, K. Cleavage of Si–H, B–H, and
C–H Bonds by Metal–Ligand Cooperation. Chem. Rev. 2019, 119,
10393–10402. (b) Forster, F.; Oestreich, M. Bioinspired Catalytic
Generation of Main-group Electrophiles by Cooperative Bond
Activation. Chimia 2018, 72, 584–588. (c) Omann, L.; Königs, C. D.
F.; Klare, H. F. T.; Oestreich, M. Cooperative Catalysis at Metal–
Sulfur Bonds. Acc. Chem.Res. 2017, 50, 1258–1269.
(14) For a cooperative Si–H bond activation with participation
of an NO ligand, see: Llamazares, A.; Schmalle, H. W.; Berke, H.
Ligand-Assisted Heterolytic Activation of Hydrogen and Silanes
Mediated by Nitrosyl Rhenium Complexes. Organometallics 2001,
20, 5277–5288.
(15) Pyykkö, P.; Riedel, S.; Patzschke, M. Triple-Bond Covalent
Radii. Chem. Eur. J. 2005, 11, 3511–3520.
(16) Omann, L.; Qu, Z.-W.; Irran, E.; Klare, H. F. T.; Grimme, S.;
Oestreich, M. Electrophilic Formylation of Arenes by Silylium Ion
Mediated Activation of Carbon Monoxide. Angew. Chem., Int. Ed
2018, 57, 8301–8305.
(17) Stahl, T.; Hrobárik, P.; Königs, C. D. F.; Ohki, Y.; Tatsumi,
K.; Kemper, S.; Kaupp, M.; Klare, H. F. T.; Oestreich, M.
Mechanism of the cooperative Si–H bond activation at Ru–S
bonds. Chem. Sci. 2015, 6, 4324–4334.
(18) For examples of neutral siloxycarbyne complexes, see: (a)
Chatani, N.; Fukumoto, Y.; Ida, T.; Murai, S. Ruthenium-
Catalyzed Reaction of 1,6-Diynes with Hydrosilanes and Carbon
Monoxide: A Third Way of Incorporating CO. J. Am. Chem. Soc.
1993, 115, 11614–11615. (b) Chatani, N.; Shinohara, M.; Ikeda, S.-i.;
Murai, S. Reductive Oligomerization of Carbon Monoxide by
Rhodium-Catalyzed Reaction with Hydrosilanes. J. Am. Chem.
Soc. 1997, 119, 4303–4304. (c) Dobbs, D. A.; Schrock, R. R.; Davis,
6 5 3
Brookhart’s Iridium(III) Pincer Complex and B(C F ) . Angew.
Chem., Int. Ed. 2013, 52, 5216–5218.
(
4) (a) Ojima, I.; Nihonyanagi, M.; Kogure, T.; Kumagai, M.;
Horiuchi, S.; Nakatsugawa, K.; Nagai, Y. Reduction of carbonyl
compounds via hydrosilylation: I. Hydrosilylation of carbonyl
compounds
tris(triphenylphosphine)chlororhodium. J. Organomet. Chem.
975, 94, 449–461. (b) Ojima, I.; Kogure, T.; Kumagai, M.;
catalyzed
by
1
Horiuchi, S.; Sato, T. Reduction of carbonyl compounds via
hydrosilylation: II. Asymmetric reduction of ketones via
hydrosilylation catalyzed by a rhodium(I) complex with chiral
phosphine ligands. J. Organomet. Chem. 1976, 122, 83–97.
1
(
5) For structurally characterized η -hydrosilane metal
complexes, see: (a) Yang, J.; White, P. S.; Schauer, C. K.;
Brookhart, M. Structural and Spectroscopic Characterization of
1
an Unprecedented Cationic Transition‐Metal η ‐Silane Complex.
Angew. Chem., Int. Ed. 2008, 47, 4141–4143. (b) Ríos, P.; Fouilloux,
H.; Vidossich, P.; Díez, J.; Lledós, A.; Conejero, S. Isolation of a
Cationic Platinum(II) σ‐Silane Complex. Angew. Chem., Int. Ed.
2
018, 57, 3217–3221.
(
6) (a) Dioumaev, V. K.; Szalda, D. J.; Hanson, J.; Franz, J. A.;
Bullock, R. M. An N-heterocyclic carbene as a bidentate
hemilabile ligand: a synchrotron X-ray diffraction and density
functional theory study. Chem. Commun. 2003, 1670–1671. (b) Wu,
F.; Dioumaev, V. K.; Szalda, D. J.; Hanson, J.; Bullock, R. M. A
Tungsten Complex with a Bidentate, Hemilabile N-Heterocyclic
Carbene Ligand, Facile Displacement of the Weakly Bound W–
3 2 2 3
W. M. Reactions of [(Me SiNCH CH ) N]WH with dihydrogen,
olefins, acetylenes, carbon monoxide, n-butylisocyanide and
(
C=C) Bond, and the Vulnerability of the NHC Ligand toward
Catalyst Deactivation during Ketone Hydrogenation.
Organometallics 2007, 26, 5079–5090.
7) Dioumaev, V. K.; Bullock, R. M. A recyclable catalyst that
precipitates at the end of the reaction. Nature 2003, 424, 530–532.
azobenzene. lnorg. Chim. Acta 1997, 263, 171–180. (d) Sakaba, H.;
1
2
Yoshida, M.; Kabuto, C.; Kabuto, K. η :η -Alkynyl-Bridged W–Si
Complexes: Formation, Structure, and Reaction with Acetone. J.
Am. Chem. Soc. 2005, 127, 7276–7277. (e) Buss, J. A.; Agapie, T.
(
ACS Paragon Plus Environment