Chemistry - An Asian Journal
10.1002/asia.201601130
COMMUNICATION
which S-methylation of thioamides is followed by the
reaction with 2-aminophenol, the iodoalkyne catalysis
presented herein allowed for direct access to benzoxazoles
from thioamides. The involvement of XB was supported by
1
3
several
mechanistic
studies,
including
C-NMR
spectroscopic analysis. Importantly, this is the first example
of an activation of the thioamide functionality through XB.
The advantages of the use of iodoalkynes over other types
of XB donor catalysts include (1) high solubility in organic
solvents, (2) high stability towards nucleophiles and
elevated temperatures, and (3) ease of preparation. Further
studies in order to expand the scope of this iodoalkyne-
based methodology are currently ongoing in our laboratory.
Scheme 1. Control experiments using non-iodinated alkynes and TfOH.
of either 4d or 4e afforded 3a in 9% or 25% yield,
respectively. These yields were comparable to that
obtained in the absence of the catalyst (Table 1, entry 10)
and thus corroborate the importance of the presence of the
iodine atom for the catalytic activity of 4a. Next, we Acknowledgements
investigated the possibility of hidden acid catalysis, which is
5
frequently discussed in the context of XB donor catalysis.
For this reaction, this possibility could be discarded,
because addition of 1 mol% of TfOH in place of catalyst 4a
This work was financially supported by Challenge Research
Grant of Hoshi University.
1
3
afforded 3a in only 39% yield.
Based on these observations, we would like to propose
a plausible catalytic cycle (Scheme 2). First, thioamide is
activated by 4a via XB to form This complex
to generate complex with
and aniline. Finally, the
regenerates catalyst
. We initially expected that addition of 4a to gave
complex , in which hydrogen bond-assisted halogen
Keywords: halogen bonds • organocatalysis • iodoalkynes •
thioamides • heterocycles
5
6
.
[1]
For selected reviews, see: a) P. Metrangolo, G. Resnati, Chem. Eur. J.
2001, 7, 2511–2519; b) P. Metrangolo, F. Meyer, T. Pilati, G. Resnati,
G. Terraneo, Angew. Chem. 2008, 120, 6200–6204; Angew. Chem. Int.
Ed. 2008, 47, 6114–6127; c) G. Cavallo, P. Metrangolo, T. Pilati, G.
Resnati, M. Sansotera, G. Terraneo, Chem. Soc. Rev. 2010, 39, 3772–
subsequently reacts with
concomitant liberation of
2
7
3
dissociation of hydrogen sulfide from
7
4
a
5
3783; d) T. M. Beale, M. G. Chudzinski, M. G. Sarwar, M. S. Taylor,
8
Chem. Soc. Rev. 2013, 42, 1667–1680; e) R. Wilcken, M. O.
Zimmermann, A. Lange, A. C. Joerger, F. M. Boeckler, J. Med. Chem.
1
4
bonding was operative. However, this possibility was ruled
out considering the fact that tertiary thioamide 1h was
efficiently activated by 4a (Table 2, entry 8).
2
013, 56, 1363–1388; f) L. P. Wolters, P. Schyman, M. J. Pavan, W. L.
Jorgensen, F. M. Bickelhaupt, S. Kozuch, WIREs Comput. Mol. Sci.
014, 4, 523–540; g) L. C. Gilday, S. W. Robinson, T. A. Barendt, M. J.
2
In conclusion, we have demonstrated that iodoalkyne 4a
could act as an XB donor catalyst for the activation of
thioamides and promote the reaction with 2-aminophenol.
Compared to the conventional two-step transformation, in
Langton, B. R. Mullaney, P. D. Beer, Chem. Rev. 2015, 115, 7118–
7195; h) G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi, G.
Resnati, G. Terraneo, Chem. Rev. 2016, 116, 2478–2601; i) M. C. Ford,
P. S. Ho, J. Med. Chem. 2016, 59, 1655–1670.
[
[
2]
3]
F. Guthrie, J. Chem. Soc. 1863, 16, 239–244.
Hydrogen Bonding in Organic Synthesis (Ed., P. M. Pihko), Wiley-VCH,
Weinheim, 2009.
[
[
4]
5]
A. Bruckmann, M. A. Pena, C. Bolm, Synlett 2008, 900–902.
a) O. Coulembier, F, Meyer, P. Dubois, Polym. Chem. 2010, 1, 434–
4
37; b) S. M. Walter, F. Kniep, E. Herdtweck, S. M. Huber, Angew.
Chem. 2011, 123, 7325-7329; Angew. Chem. Int. Ed. 2011, 50, 7187–
191; c) F. Kniep, L. Rout, S. M. Walter, H. K. V. Bensch, S. H.
Jungbauer, E. Herdtweck, S. M. Huber, Chem. Commun. 2012, 48,
299–9301; d) F. Kniep, S. M. Walter, E. Herdtweck, S. M. Huber,
7
9
Chem. Eur. J. 2012,18, 1306–1310; e) F. Kniep, S. H. Jungbauer, Q.
Zhang, S. M. Walter, S. Schindler, I. Schnapperelle, E. Herdtweck, S. M.
Huber, Angew. Chem. 2013, 125, 7166-7170; Angew. Chem. Int. Ed.
2013, 52, 7028–7032; f) W. He, Y.-C. Ge, C.-H. Tan, Org. Lett., 2014,
16, 3244–3247; g) R. Castelli, S. Schindler, S. M. Walter, F. Kniep, H. S.
Overkleeft, G. A. Van der Marel, S. M. Huber, J. D. C. Codée, Chem.
Asian J. 2014, 9, 2095–2098; h) S. H. Jungbauer, S. M. Walter, S.
Schindler, L. Rout, F. Kniep, S. M. Huber, Chem. Commun. 2014, 50,
6281–6284; i) Y. Takeda, D. Hisakuni, C.-H. Lin, S. Minakata, Org. Lett.
2015, 17, 318–321; j) M. Saito, N. Tsuji, Y. Kobayashi, Y. Takemoto,
Org. Lett. 2015, 17, 3000–3003; k) S. H. Jungbauer, S. M. Huber, J.
Am. Chem. Soc. 2015, 137, 12110–12120.
[
6]
For other uses of XB in organic synthesis, see: a) V. N. G. Lindsay, W.
Lin, A. B. Charette, J. Am. Chem. Soc. 2009, 131, 16383–16385; b) S.
Scheme 2. Plausible catalytic cycle for the transformation of thioamides to
benzoxazoles.
For internal use, please do not delete. Submitted_Manuscript
This article is protected by copyright. All rights reserved