ORGANIC
LETTERS
2
006
Vol. 8, No. 14
025-3027
Catalytic Enantioselective Borohydride
Reduction of Ortho-Fluorinated
Benzophenones
3
Ai Kokura, Saiko Tanaka, Taketo Ikeno, and Tohru Yamada*
Department of Chemistry, Faculty of Science and Technology, Keio UniVersity,
Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
Received April 17, 2006
ABSTRACT
In the presence of the optically active ketoiminatocobalt(II) complexes, the enantioselective borohydride reduction of benzophenones was
successfully completed. The fluorine atom on the ortho position of the benzophenone and aryl ketones proved effective for obtaining high
enantioselectivities. The combined use of modified lithium borohydride afforded the corresponding benzhydrols and arylcarbinols in high
yield and high enantioselectivity (88−96% ee).
Although sodium borohydride is an inexpensive, safely
handled, and readily available reducing agent that provides
various reduction processes both in the laboratory and in
industry, a catalytic and enantioselective version has been
very limited, except for the catalytic enantioselective 1,4-
sponding reduced products with high to excellent enanti-
oselectivities. Optically active benzhydrols are some of the
most important frameworks of pharmaceutical compounds,
8
9
such as neobenodine, carbinoxamine, and orphenadrine. For
their synthesis, two strategies have been proposed: the
enantioselective reduction of precursory benzophenone de-
rivatives using enantioselective hydrogenation catalyzed by
1
reduction with semicorrin cobalt(II) complexes. The catalytic
enantioselective borohydride reduction catalyzed by the
optically active cobalt(II) complexes developed in our
10
BINAP/ruthenium complexes and the enantioselective CBS
2
11
laboratory has been a unique practical process that has been
reduction catalyzed by oxazaborolidine derivatives, though
3
applied to various substrates, such as ketones, imine
high pressure or high catalyst loading was sometimes
required for high enantioselectivity. An alternative method
4
5
derivatives, R,â-unsaturated carboxylates, 1,3-dicarbonyl
6
7
compounds, ferrocenyl ketones, etc., to afford the corre-
(
5) Ohtsuka, Y.; Ikeno, T.; Yamada, T. Tetrahedron: Asymmetry 2003,
(
1) (a) Leutengger, U.; Madin, A.; Pfaltz, A. Angew. Chem., Int. Ed.
Engl. 1989, 28, 60-61. (b) Matt, P. V.; Pfaltz, A. Tetrahedron: Asymmetry
991, 691-700.
2) (a) Nagata, T.; Yorozu, K.; Yamada, T.; Mukaiyama, T. Angew.
14, 967-970.
(6) (a) Ohtsuka, Y.; Kubota, T.; Ikeno, T.; Nagata, T.; Yamada, T. Synlett
2000, 535-537. (b) Ohtsuka, Y.; Koyasu, K.; Ikeno, T.; Yamada, T. Org.
Lett. 2001, 3, 2543-2546.
1
(
Chem., Int. Ed. Engl. 1995, 34, 2145-2147. (b) Sugi, K. D.; Nagata, N.;
Yamada, T.; Mukaiyama, T. Chem. Lett. 1997, 493-494. (c) Yamada, T.;
Nagata, T.; Sugi, K. D.; Yorozu, K.; Ikeno, T.; Ohtsuka, Y.; Miyazaki, D.;
Mukaiyama, T. Chem.-Eur. J. 2003, 9, 4485-4509.
(7) Sato, H.; Watanabe, H.; Ohtsuka, Y.; Ikeno, T.; Fukuzawa, S.;
Yamada, T. Org. Lett. 2002, 4, 3313-3316.
(8) Muller, P.; Nury, P.; Bernardinelli, G. Eur. J. Org. Chem. 2001, 21,
4137-4147.
(3) (a) Sugi, K. D.; Nagata, T.; Yamada, T.; Mukaiyama, T. Chem. Lett.
(9) (a) Casy, A. F.; Drake, A. F.; Ganellin , C. R.; Mercer , A. D.; Upton,
C. Chirality 1992, 4, 356-366. (b) Shafi’ee, A.; Hite, G. J. Med. Chem.
1969, 12, 266-270.
1
996, 737-738. (b) Sugi, K. D.; Nagata, T.; Yamada, T.; Mukaiyama, T.
Chem. Lett. 1996, 1081-1082. (c) Nagata, T.; Sugi, K. D.; Yamada, T.;
Mukaiyama, T. Synlett 1996, 1076-1078.
(10) Ohkuma, T.; Koizumi, M.; Ikehira, H.; Yokozawa, T.; Noyori, R.
Org. Lett. 2000, 2, 659-662.
(4) Sugi, K. D.; Nagata, T.; Yamada, T.; Mukaiyama, T. Chem. Lett.
1
997, 493-494.
(11) Corey, E. J.; Helal, C. J. Tetrahedron Lett. 1995, 50, 9153-9156.
1
0.1021/ol060927p CCC: $33.50
© 2006 American Chemical Society
Published on Web 06/08/2006