Please do not adjust margins
Green Chemistry
Page 6 of 8
ARTICLE
Journal Name
4.
A/TiO2 and Pd-N/TiO2 (Figure 3d). Only Lewis acidic sites (1445
cm-1) were observed on both catalysts.35,
And the
6880.
DOI: 10.1039/D0GC00732C
5.
6.
7.
M. Huang, J. Am. Chem. Soc., 1946, 68, 2487-2488.
T. Nakabayashi, J. Am. Chem. Soc., 1960, 82, 3900-3906.
C. Schäfer, C. J. Ellstrom, H. Cho and B. Török, Green Chem.,
2017, 19, 1230-1234.
X. Ke, X. Zhang, J. Zhao, S. Sarina, J. Barry and H. Zhu, Green
Chem., 2013, 15, 236-244.
calculated surface density of Lewis acidic sites on Pd-A/TiO2
(0.199 mmol g−1) was double of that on Pd-N/TiO2 (0.098 mmol
g−1) based on the band at 1440 cm−1.35 More Lewis acidic sites
on Pd-A/TiO2 may be responsible for the excellent performance
on transfer hydrogenolysis from AP to EB.
8.
Based on mechanism studies and catalyst characterizations,
9.
N. Kalutharage and C. S. Yi, J. Am. Chem. Soc., 2015, 137,
11105-11114.
a possible transfer hydrogenolysis mechanism on Pd-A/TiO2 was
Under irradiation of light, the
10.
L. Offner-Marko, A. Bordet, G. Moos, S. Tricard, S.
Rengshausen, B. Chaudret, K. L. Luska and W. Leitner,
Angew. Chem. Int. Ed., 2018, 57, 12721-12726.
S. Wang, P. Zhou, L. Jiang, Z. Zhang, K. Deng, Y. Zhang, Y.
Zhao, J. Li, S. Bottle and H. Zhu, J. Catal., 2018, 368, 207-
216.
T. Schwob, P. Kunnas, N. de Jonge, C. Papp, H. P. Steinrück
and R. Kempe, Sci. Adv., 2019, 5, eaav3680.
M. Mehta, M. H. Holthausen, I. Mallov, M. Perez, Z. W. Qu,
S. Grimme and D. W. Stephan, Angew. Chem. Int. Ed., 2015,
54, 8250-8254.
photogenerated holes on TiO2 oxidized the ethanol to
acetaldehyde and proton. The photogenerated electrons on
TiO2 migrated to Pd0 particles and reduced the proton to
activated hydrogen species (Pd-H). Then the ketone substrate
was reduced to alcohol intermediate by Pd-H. In the presence
of abundant Lewis acidic sites on TiO2, the alcohol intermediate
was dehydrated and further hydrogenated to ethylbenzene by
Pd-H. Thus Pd-A/TiO2 acted as the bifunctional photocatalyst
containing hydrogen transfer sites and Lewis acidic sites, which
realized the transfer hydrogenolysis using alcohols without
addition of other additives.
11.
12.
13.
14.
A. Volkov, K. P. Gustafson, C. W. Tai, O. Verho, J. E. Backvall
and H. Adolfsson, Angew. Chem. Int. Ed., 2015, 54, 5122-
5126.
15.
16.
Z. Dong, J. Yuan, Y. Xiao, P. Mao and W. Wang, J. Org.
Chem., 2018, 83, 11067-11073.
R. J. Andrews, S. S. Chitnis and D. W. Stephan, Chem.
Commun., 2019, 55, 5599-5602.
G. Argouarch, New J. Chem., 2019, 43, 11041-11044.
S. Ram and L. D. Spicer, Tetrahedron Lett., 1988, 29, 3741-
3744.
H. Mao, X. Liao and B. Shi, Catal. Commun., 2011, 12, 1177-
1182.
D. R. Zuidema, S. L. Williams, K. J. Wert, K. J. Bosma, A. L.
Smith and R. C. Mebane, Synth. Commun., 2011, 41, 2927-
2931.
S. Sawadjoon, A. Lundstedt and J. S. M. Samec, ACS Catal.,
2013, 3, 635-642.
L.-H. Gong, Y.-Y. Cai, X.-H. Li, Y.-N. Zhang, J. Su and J.-S.
Chen, Green Chem., 2014, 16, 3746-3751.
D. Zhang, F. Ye, T. Xue, Y. Guan and Y. M. Wang, Catal.
Today, 2014, 234, 133-138.
J. R. Bernardo and A. C. Fernandes, Green Chem., 2016, 18,
2675-2681.
B. Ciszek and I. Fleischer, Chem. Eur. J., 2018, 24, 12259-
12263.
K. Imamura, H. Kato, Y. Wada, K. Makabe, A. Onda, A.
Tanaka, H. Kominami, K. Sato and K. Nagaoka, Chem.
Commun., 2018, 54, 7298-7301.
S. Yang, W. Tang, Z. Yang and J. Xu, ACS Catal., 2018, 8,
9320-9326.
J. Yuan, S. Li, L. Yu, Y. Liu and Y. Cao, Chin. J. Catal., 2013,
34, 2066-2074.
D. Prat, J. Hayler and A. Wells, Green Chem., 2014, 16,
4546-4551.
M. Tobiszewski, S. Tsakovski, V. Simeonov, J. Namieśnik
and F. Pena-Pereira, Green Chem., 2015, 17, 4773-4785.
D. Prat, A. Wells, J. Hayler, H. Sneddon, C. R. McElroy, S.
Abou-Shehada and P. J. Dunn, Green Chem., 2016, 18, 288-
296.
Conclusions
Herein we developed a photocatalytic transfer hydrogenolysis
of aromatic ketones using alcohols as hydrogen donor at room
temperature. The Pd-hydride species could be generated from
activation of alcohols under light irradiation and reduced
substrates directly. The detection of benzylic alcohol
intermediate suggested a stepwise reduction pathway. The
combination of Lewis acidic sites and hydrogen transfer sites on
Pd/TiO2 may be the key to achieve efficient deoxygenation
without external additives.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (21721004, 21961130378, 21690080), the
Ministry of Science and Technology of the People's Republic of
China (2018YFE0118100), the "Strategic Priority Research
Program of the Chinese Academy of Sciences" (XDB17000000)
and Dalian Science and Technology Innovation Fund
(2019J11CY009).
27.
28.
29.
30.
31.
References
1.
2.
J. J. Bozell and G. R. Petersen, Green Chem., 2010, 12, 539.
D. M. Alonso, S. G. Wettstein and J. A. Dumesic, Chem. Soc.
Rev., 2012, 41, 8075-8098.
3.
M. Besson, P. Gallezot and C. Pinel, Chem. Rev., 2013, 114,
1827-1870.
32.
M. Tobiszewski, J. Namieśnik and F. Pena-Pereira, Green
Chem., 2017, 19, 1034-1042.
6 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins