B. Larissegger-Schnell et al. / Tetrahedron 62 (2006) 2912–2916
2915
Ferre, R. A.; Worland, S. T. J. Med. Chem. 2002, 45,
1607–1623.
4.1.7. (R)-2-Acetoxy-4-phenylbutanoic acid (R)-4. In the
same manner as described above, rac-2 (0.5 g, 2.8 mmol)
was converted to rac-4 (0.84 g, 87%).
5. Storz, T.; Dittmar, P.; Fauquex, P. F.; Marschal, P.;
Lottenbach, W. U.; Steiner, H. Org. Process Res. Dev. 2003,
7, 559–570.
Kinetic resolution step (d): to a solution of rac-4 (0.54 g,
2.4 mmol) in acetone (2.5 mL) and phosphate buffer
(25 mL, pH 7.5, 50 mmol), lipase from Candida antarctica
B (Novozyme 435, 0.5 g) was added and the mixture was
shaken for 24 h at 30 8C and 150 rpm. The lipase was
recovered by filtration and dried for reuse. The filtrate
was evaporated from acetone, the residue was acidified with
HCl (3 M) to pH 1–2, extracted three times with ethyl
acetate, dried (Na2SO4) and evaporated.
6. Adam, W.; Lazarus, M.; Schmerder, A.; Humpf, H.-U.;
¨
Saha-Moller, C. R.; Schreier, P. Eur. J. Org. Chem. 1998,
2013–2018.
7. Aladro, F. J.; Guerra, F. M.; Moreno-Dorado, F. J.;
Bustamante, J. M.; Jorge, Z. D.; Massanet, G. M. Tetrahedron
Lett. 2000, 41, 3209–3213.
8. (a) Sheldon, R. A. Chirotechnology; Marcel Dekker: New
York, 1993; pp 362–367. (b) Sheldon, R. A.; Zeegers, H. J. M.;
Houbiers, J. P. M.; Hulshof, L. A. Chimica Oggi 1991, 9,
35–47.
For the racemization step (b) see above.
¨
9. Attwood, M. R.; Hassall, C. H.; Krohn, A.; Lawton, G.;
After repeating steps (c) and (d) twice and step (b) once, the
residue obtained by extraction was purified by flash
chromatography (to remove minor impurities emerging
from the cells) using dichloromethane/methanol (gradient
from 0–10% MeOH) to yield (R)-4 as sole product (0.28 g,
45%); mp: 27–30 8C; [a]D20 C5.21 (c 1.36; acetone, O99%
ee). HPLC analysis using the method described above
showed a single peak at TRet 24.4 min.
Redshaw, S. J. Chem. Soc., Perkin Trans. 1 1986, 1011–1019.
10. (a) Liese, A.; Kragl, U.; Kierkels, H.; Schulze, B. Enzyme
Microb. Technol. 2002, 30, 673–681. (b) Kalaritis, P.;
Regenye, R. W.; Partridge, J. J.; Coffen, D. L. J. Org. Chem.
1990, 55, 812–815. (c) Chadha, A.; Manohar, M. Tetrahedron:
Asymmetry 1995, 6, 651–652. (d) Osprian, I.; Fechter, M. H.;
Griengl, H. J. Mol. Catal. B: Enzym. 2003, 24, 89–98. (e)
Huang, S. H.; Tsai, S. W. J. Mol. Catal. B: Enzym. 2004, 28,
65–69. (f) Sugai, T.; Ohta, H. Agric. Biol. Chem. 1991, 55,
293–294.
4.1.8. (R)-2-Hydroxy-4-phenylbutanoic acid (R)-2. In the
same manner as described above, (R)-4 (0.2 g; 0.9 mmol)
was converted to (R)-2 (0.12 g, 74%); mp 115–117 8C; lit.23
mp: 114 8C; [a]D20 K8.5 (c 1.0; EtOH, O99% ee); lit.23 [a]2D5
K9.0 (c 0.1; EtOH). HPLC analysis using the method
described above showed a single peak at TRet 24.8 min.
11. (a) Spindler, F.; Pittelkow, U.; Blaser, H. U. Chirality 1991, 3,
370–375. (b) Chang, C.-Y.; Yang, T.-K. Tetrahedron: Asym-
metry 2003, 14, 2239–2245. (c) Chadha, A.; Manohar, M.;
Soundararajan, T.; Lokeswari, T. S. Tetrahedron: Asymmetry
1996, 7, 1571–1572. (d) Fadnavis, N. W.; Radhika, K. R.
Tetrahedron: Asymmetry 2004, 15, 3443–3447. (e) Schmidt, E.;
Blaser, H. U.; Fauquex, P. F.; Sedelmeier, G.; Spindler, F. In
Microbial Reagents in Organic Synthesis; Servi, S., Ed.; NATO
ASI Series C; Kluwer Academic: Dordrecht, 1992; Vol. 381,
pp 377–388. (f) Blaser, H. U.; Jalett, H. P. Stud. Surf. Sci. Catal.
1993, 78, 139–146. (g) Hummel, W.; Schu¨tte, H.; Schmidt, E.;
Wandrey, C.; Kula, M. R. Appl. Microbiol. Biotechnol. 1987, 26,
409–416. (h) Dao, D. H.; Kawai, Y.; Hida, K.; Hornes, S.;
Nakamura, K.; Ohno, A.; Okamura, M.; Akasaka, T. Bull. Chem.
Soc. Jpn. 1998, 71, 425–432. (i) Kaluzna, I.; Andrew, A. A.;
Bonilla, M.; Martzen, M. R.; Stewart, J. D. J. Mol. Catal. B:
Enzym. 2002, 17, 101–105. (j) Fechter, M. H.; Griengl, H. In
Drauz, K., Waldmann, H., Eds. 2nd ed.; Enzyme Catalysis in
Organic Synthesis; Wiley-VCH: Weinheim, 2002; Vol. 2,
pp 974–989. (k) North, M. Tetrahedron: Asymmetry 2003, 14,
147–176. (l) Wang, Y.-F.; Chen, S.-T.; Liu, K. K.-C.;
Wong, C.-H. Tetrahedron Lett. 1989, 30, 1917–1920. (m)
Herold, P.; Indolese, A. F.; Studer, M.; Jalett, H. P.; Siegrist, U.;
Blaser, H. U. Tetrahedron 2000, 56, 6497–6499.
Acknowledgements
This study was performed within the Research Centre
Applied Biocatalysis. Financial support by BASF AG
(Ludwigshafen), TIG, FFG, Province of Styria and City of
Graz is gratefully acknowledged. B. Hauer and R. Stu¨rmer
(BASF-AG) are thanked for their valuable contributions.
References and notes
¨
¨
¨
1. (a) Strom, K.; Sjogren, J.; Broberg, A.; Schnurer, J. Appl.
Environ. Microbiol. 2002, 68, 4322–4327. (b) Dieuleveux, V.;
van der Pyl, D.; Chataud, J.; Gueguen, M. Appl. Environ.
Microbiol. 1998, 64, 800–803.
2. (a) Valls, N.; Lopez-Canet, M.; Vallribera, M.; Bonjoch, J.
Chem. Eur. J. 2001, 7, 3446–3460. (b) Valls, N.; Vallribera, M.;
Carmeli, S.; Bonjoch, J. Org. Lett. 2003, 5, 447–450. (c)
Ishida, K.; Okita, Y.; Matsuda, H.; Okino, T.; Murakami, M.
Tetrahedron 1999, 55, 10971–10988.
12. (a)Faber,K.Chem.Eur.J.2001,7, 5004–5010. (b) Strauss, U. T.;
Felfer, U.; Faber, K. Tetrahedron: Asymmetry 1999, 10,
107–117.
¨
13. Huerta, F. F.; Laxmi, Y. R. S.; Backvall, J.-E. Org. Lett. 2000,
2, 1037–1040.
3. Valls, N.; Vallribera, M.; Lopez-Canet, M.; Bonjoch, J. J. Org.
Chem. 2002, 67, 4945–4950.
14. Chadha, A.; Baskar, B. Tetrahedron: Asymmetry 2002, 13,
1461–1464.
4. (a) Tao, J.; McGee, K. Org. Process Res. Dev. 2002, 6, 520–527.
(b) Dragovich, P. S.; Prins, T. J.; Zhou, R.; Brown, E. L.;
Maldonado, F. C.; Fuhrman, S. A.; Zalman, L. S.; Tuntland, T.;
Lee, C. A.; Patick, A. K.; Matthews, D. A.; Hendrickson, T. F.;
Kosa, M. B.; Liu, B.; Batugo, M. R.; Gleeson, J.-P. R.;
Sakata, S. K.; Chen, L.; Guzman, M. C.; Meador, J. W.;
15. Although a remarkable number of stereochemically matching
pairs of biocatalysts possessing opposite enantio-preference
have been reported, the search, for example, ‘anti-Kazlauskas’
carboxyl ester hydrolases and ‘anti-Prelog’ alcohol dehydro-
genases still represents a major challenge in biocatalysis.